CSI 4103 / 5138: Great Algorithms Lecture 9
University of Ottawa, Fall 2025

In a sampling problem, the objective is to produce a sample from some specified distribution. This
could be one of the distributions that you learn about in probability class like Gaussian or Poisson, or
something more complicated like a random image with a cow in it coming from some model.

Sampling algorithms assume access to some “pure” source of randomness like independent random coin
flips or uniformly random numbers in some (possibly continuous) range. The job of the algorithm is to
convert this randomness into a sample from the desired distribution.

When the distribution is supported on a few values and their probabilities are explicitly provided there
are several natural algorithms. One way is to output the preimage of the cumulative distribution function
evaluated at a random point U between 0 and 1 (see Figure 1). If you are bothered by infinitely precise
sources of randomness there is the Knuth-Yao algorithm. For common random variables like Gaussians
there are tailored samplers like the Box-Muller transform.
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FiGURE 1: Cumulative distribution sampling for the distribution with probability mass func-
tion p(2) = 1/3,p(3) =1/2,p(5) = 1/6. If U = 0.39 the sampler outputs 3.

1 Random walks on large graphs

Markov Chain Monte Carlo is a class of sampling algorithms for distributions over “exponentially” large
sets. The ordering of a deck of cards is one example. A deck of 52 cards has 52! possible orderings. The
job of the dealer in the casino is to pick one of these 52! possible orderings at random. How does he do it?
By shuffling the deck.

A card shuffle is a complex process. The idea of Markov Chain Monte Carlo is to break it up into
simple small independent random steps. One type of step is a random transposition: Pick two cards from
the deck at random and swap (transpose) their positions. Then repeat. This is not how dealers shuffle but
a computer could. Why should we expect it to end up with a random ordering?

The key to understanding a stochastic process like shuffling is good representation. Graphs come in
handy. Imagine a humongous graph G with 52! vertices. Each vertex represents a configuration (ordering)
of the deck. Two configurations form an edge if they differ by a swap of some two cards. The analogous
graph for a three-card deck is shown in Figure 2.

231 — 213
321 123
312 — 132

FIGURE 2: The random walk graph G for shuffling three cards using random transpositions.

Markov Chain Monte Carlo performs a random walk on this graph.
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Algorithm RandomW alk

Input: A graph G represented implicitly.

1 Choose a starting vertex v of G.

2 Until you are happy,

3 Move v to a random neighbor of v.

In our example the starting vertex is the ordered deck 123. It moves to one of its three neighbors at
random, and so on. After say 100 steps we would expect the algorithm to be more or less equally likely to
be present at any of the six vertices. Why is that?

To answer this question we need to understand how the probability mass function of the random walk
state evolves over time. Initially (at time zero) the state is 123 (with probability 1). At time 1 all three of
its neighbors’ are equally likely and the state has probability distribution

pi(132) =1/3 pi(213) = 1/3 pi(321) = 1/3.

The state in step 2 depends on its state in step 1. Conditioned on it being at 132 in step 1, all of the
neighbors of 132 are equally likely:

T(123|132) = 1/3 T(231[132) = 1/3 T(312[132) = 1/3.
These transition probabilities are time-independent. A transition from state u to state v always happens

with probability
1

T - -
(vlu) degree of u’

whenever v is a neighbor of u (1)

because all neighbors of u are equally likely. The probability p’(v) of reaching state v at the next step is
calculated using the law of total probability. It is the average of the probabilities among v’s neighbors.

p(v) =) T(v|u) - p(u) (2)
u
For example, the probability of reaching state 123 in step 2 is
1 1 1 1
p2(123) = = - p1(132) + = - p1(213) + = - p1(321) =
3 3 3 3
On the other hand, the probability of reaching state 132 is

1 1 1
p2(132) = 2 - p1(123) + 5 - p1(231) + 5 - p1(312) = 0.

Completing this calculation reveals that the probability distribution at step 2 is
p2(123) = 1/3 po(231) =1/3 py(312) = 1/3.
In matrix-vector notation, equation (2) becomes
p' =Tp. (3)
To figure out the distribution p; after ¢ steps we iterate (3) to obtain
p: = T'po.

For large ¢, the action of T is governed by the dominant right eigenvector(s) of T'. (We distinguish between
left and right eigenvectors because 7" might not be symmetric.) What are the corresponding eigenvalues?
We can answer this question almost completely without knowing much about 7. Because py and p; are



both probability distributions, we know that 7' cannot grow its input. Applying it many times would
result in “probabilities” that exceed 1. It cannot shrink its input either because after many steps the
“probabilities” would be adding up to something close to zero. The only remaining possibility is that T
has spectral norm 1.

A matrix like T' whose columns are (conditional) probability distributions is called a stochastic matriz.*
We just argued that

Proposition 1. Fvery stochastic matriz has spectral norm 1.

Equation (3) takes on a particularly nice form when the graph is regular, namely all vertices have the
same degree d. In that case, the transition probabilities are either 1/d when uv is an edge, or zero when
it isn’t. The transition matrix equals the adjacency matrix of G scaled by 1/d:

T = éG, if G is d-regular.
The uniform distribution u = (1/N,...,1/N) = (1/N)(1,---,1), where N is the number of vertices, is an
eigenvector of G with eigenvalue d. This means it is preserved by the transition matrix: Tu = u. As u is
associated with the top eigenvalue 1 of T' we might expect the random walk distribution p; to eventually
approach the uniform distribution u. In other words, the state becomes uniformly random in the long run.
Is that so?

In general, no. For example, in the 3-card shuffle the distribution keeps shifting between the p; and
p2 that we calculated, never settling onto u (see Figure 3 (a)). The reason is that 7" has the spurious
eigenvalue —1.

This —1 eigenvalue can be eliminated by adding loops at the vertices of G. The effect is that at each
step the random walk stays where it is with some probability. These loops adjust the transition matrix to
a mixture of itself and the identity matrix

new T = (1 —p)T + pI

thereby ensuring no eigenvalue smaller than —14-2p survives. This transformation preserves the stochastic-
ity of T'. Applying it to the 3-card shuffle (with p = 1/4) results in convergence to a uniform configuration
(see Figure 3 (b)).
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FIGURE 3: Evolution of the random walk on G (a) without loops and (b) with loops.

!Probability books usually work with the transpose of T, in which case the probability distributions are the rows of the
matrix and equation (3) reads p’ = pT''.



2 The Metropolis-Hastings algorithm

There are many ways to shuffle a deck of cards on the computer. Markov Chains do not have any particular
advantage in this context. To demonstrate their worth we have to complicate the setup a little.

Suppose that we want the shuffle to result with not just any configuration, but one that satisfies a
particular constraint. Here is one example: Consecutive cards should never have consecutive labels. In a
6-card deck this disallows configurations like 136524 because cards 5 and 6 occupy consecutive positions.

This is an example of a conditional sampling problem. You want to sample from a distribution con-
ditioned on it satisfying some constraint. Conditional sampling is a common problem in causal statistics.
There one starts with a model that describes how a (probabilistic) cause results in some effect, e.g., what
are the chances that a person that has COVID tests positive for it. One then observes the effect and wants
to figure out the conditional distribution of the cause given the effect. The ability to sample from this
distribution is a good starting point.

How would we shuffle a deck of n cards but avoid consecutive labels? The idea of Markov Chain Monte
Carlo is to set up and perform a random walk, but only on the subset of those valid configurations that
satisfy the constraint. What is the underlying graph? The simplest way to construct it is to start with the
one we already have, namely the transposition shuffle graph, and remove all the invalid vertices and their
incident edges from it. Let’s name this graph V,,. The graph Vj is shown in Figure 4 (a).

142563 —— 24153 —— 24135
135624 —— 31524 —— 31425 — 642531
53142 —— 35142 —— 35241 s 142536 — 241536 — 241635 e
/ \
42531 —— 42513 —— 52413 — 142635
25314 41352

FIGURE 4: Subgraphs induced by the subset of valid configurations for (a) the 5-card shuffle
and (b) the 6-card shuffle (the portion incident to vertices 142536 and 241536).

There is a problem. V5 is not connected. If the random walk starts at 14253 it can never reach 13524.
Even if we add in loops the distribution after many steps will end up settling on a connected component,
resulting in a non-uniform outcome. The algebraic reason for this is the multiplicity of the eigenvalue 1 in
the matrix T

A transition matrix is irreducible if the underlying graph is (strongly) connected: It is possible to get
from any state to any other state with nonzero probability. Reducibility turns out to be the only essential
obstacle to convergence.

Theorem 2 (Perron-Frobenius Theorem). If T is stochastic, is irreducible and aperiodic then it has a
unique right eigenvector with eigenvalue 1.

By scaling this eigenvector we can ensure its entries add up to one. It then represents a probability
distribution called the stationary distribution. In summary, as long as we ensure connectivity (and aperi-
odicity by adding loops), the Perron-Frobenius Theorem guarantees that the random walk will converge
to the distribution described by the unique top right eigenvector of T

Unlike V5, Vg happens to be connected. A random walk on V4 is guaranteed to converge. Is this a good
way to shuffle?

The answer is no. It is not enough that the random walk converges to a unique stationary distribution.
We also have to ensure that the stationary distribution is the one we want, namely the uniform distribution
over the subset of valid configurations. This is not the case for the random walk on Vg because its vertices
have uneven degrees. For example, vertex 142536 has three neighbors, but vertex 241536 has only two (see



Figure 4 (b)). If the uniform distribution (over valid configurations) is ever reached, in the next step the
odds of reaching u = 142536 versus v = 241536 are 3 : 2. The uniform distribution cannot be stationary.

Famed physicist Nicholas Metropolis came up with an ingenious solution to this problem. Suppose
the random walk is at state w and is thinking of transitioning to state v. If the ratio of probabilities
T(u|v)/T(v|u) exceeds 1, move to v. Otherwise, move to v with probability T'(u|v)/T(v|u) only, and stay
at u with the remaining probability 1 — T'(u|v)/T(v|u). Altogether, the transition probabilities resulting
from Metropolis’s rule are

T (v|u) = T(v|u) - min{T (u|v) /T (v|u), 1} = min{T (u|v), T'(v|u)} whenever u # v. (4)

The transition probabilities in 7" are smaller than those in T. How come they add up to 1?7 The difference
is accounted for by the loop probabilities T”(v|v).

The beauty of equation (4) is that 7" is now symmetric: T”'(v|u) equals T'(u|v). This means that not
only are the columns of T" probability distributions, but so are its rows. So the entries in each row add
to 1. But then the all-ones vector is an eigenvector of T with eigenvalue 1. By Theorem 2 the uniform
distribution, which is a multiple of this vector, must be the stationary one!

In summary, Metropolis’s rule allows us to turn any connected graph over the set of valid configu-
rations (with bidirectional edges) into a Markov Chain that converges to the uniform distribution on its
vertices. The rule can be further modified to allow convergence to any desired stationary distribution s,
not necessarily the uniform one.

Algorithm M H (the Metropolis-Hastings algorithm)
Inputs: A stochastic matrix T and a target distribution s, represented implicitly.
Choose a starting vertex wu.
Until you are happy,
Sample a neighbor v of u with probability T'(v|u).
Calculate the ratio p = min{s(v)T (u|v)/s(u)T(v|u),1}.
With probability p, replace u by v.

U W N =

The Metropolis-Hastings’ rule ensures that the modified stochastic matrix satisfies the detailed balance
condition

T'(v]u)s(u) = T (ulv)s(v) ()

for all v and v. This in turn guarantees that s is the top right eigenvector of 7”. By Theorem 2 it must be
the unique stationary distribution of the Markov Chain.

How might we go about implementing the M H algorithm for a specific problem like sampling valid
card orderings? First, we need a starting vertex. This is not a given. Coming up with a starting vertex
means that we need to know at least one solution that satisfies the constraint. Such a solution can be hard
to find for some problems like Learning With Errors. One tactic that ensures an easy starting vertex is to
replace a hard constraint like “the permutation has no consecutive numbers” with a softer one that allows
such permutations but assigns a relatively small probability to them, making it unlikely that they are ever
sampled. We’ll come back to this idea in Section 4. For the valid card shuffling example V5 we don’t have
to go there. We can pick a specific valid ordering like 142536 to start with.

Next we need to implement step 3. M H asks us to sample a random neighbor of any given vertex. A
common strategy for this is to keep the graph sparse, ensuring that the set of neighbors of each state is much
smaller than the number of states. This is the case for the transposition shuffle. There are n! = n®mlogn)
ways to order an n-card deck, but only (g‘) = O(n?) ways to transpose a pair of cards. Asymptotically, the
“degree” of a configuration is polynomial in the length of the string that describes it (a permutation of n
numbers). Moreover, the transitioning rule is simple to implement: Swap two numbers.

We now come to step 4. To implement it we seem to need four pieces of information: The transition
probabilities T'(u|v), T'(v|u) and the stationary probabilities s(u), s(v). In a transition matrix arising from
a graph all transitions out of a vertex are equally likely, and T'(v|u) is the reciprocal of the degree of wu.



If the neighborhoods are small then the degree of a vertex should be easy to calculate. For example, in
the Markov Chain on V,, we can enumerate all potential (g) neighbors of v and check how many of them
represent valid configurations.

How about the stationary probabilities s(u) and s(v)? In our example the stationary distribution is
uniform over the set of valid configurations, so s(u) is the reciprocal of the number of such configurations.
But this number is not easy to find. Counting configurations is typically even harder than sampling a
random one. Yet another amazing feature of the Metropolis-Hastings rule is that we do not need to know
s(u) and s(v) but merely their ratio s(u)/s(v). When the stationary distribution is uniform over some
subset of configurations this ratio is always one! Even when it is not, there are many interesting examples
in which the likelihood ratio s(u)/s(v) is easy to find even when s(u) and s(v) are not. We'll see a less
obvious example in Section 4.

3 Mixing times

You can now sit back, relax, and prepare to fly. When can you expect to arrive in stationary heaven? If
you are a perfectionist, never. The best you can aspire is to get sufficiently close.

The tools we learned in lectures 2 and 3 should give us a sense of the rate of convergence. For simplicity
let’s assume T' is symmetric already and the unique stationary distribution is uniform. (The general theory
is similar but the notation is more cumbersome.) The initial distribution py can be represented as a linear
combination of the stationary distribution u and an orthogonal component v (which is not a probability
distribution):

Po = au + vy, where u - vg = 0.

As u is the unique dominant eigenvector of T with eigenvalue 1, after many steps of the random walk the
v-component will vanish, namely p; = T%pg will approach au in the large ¢ limit. As both p; and u are
probability distributions, « must equal one and vg will equal pg — u. As vy = p; — u remains orthogonal
to u, the rate at which it shrinks is governed by the second largest eigenvalue Ao of T' (in absolute value):

Ipe — ull < [A2f" - [[po — ull. (6)

Equation (6) tells us two things. First, the rate of convergence is determined by the spectral gap 1 — |Aa|.
The farther |\y| is from 1, the faster we get to stationary. Second, the convergence rate is exponential.
Once |A2]" becomes smaller than some fixed constant, say 1/e, then every subsequent ¢ steps get us down
by another factor of 1/e. After running it for kt steps the state of the Markov Chain is e *-close to uniform
in Euclidean distance. The “hard work” is getting |X\2|' down to a constant, say 1/e.

Definition 3. The geometric mizing time of a Markov Chain is the smallest value of ¢ for which |\o|*
drops below 1/e, namely ¢t = —1/1In|As|.

When |Ag]| is close to 1, —In|Ag| is approximately equal to 1 — |A2| so the Euclidean mixing time is
about the inverse of the spectral gap.

As the underlying graph is very large we have no chance of calculating the spectral gap even on a
computer. For some “structured” Markov Chains like permuting with unrestricted transpositions it can be
calculated, but examples like that appear to be rare. A famous one among theorists is the recent resolution
of the Mihail-Vazirani conjecture (whatever that is) by Anari, Liu, Oveis Gharan, and Vinzant.

There is an appealing alternative measure called the (stochastic) mixing time. This is the first step ¢
at which the random walk distribution p’ becomes 1/2e-statistically indistinguishable from the stationary
one. Two distributions are e-statistically indistinguishable if no hypothesis can tell a sample of one versus
the other with advantage more than e.

Coupling is a fairly intuitive method for bounding the mixing time. The idea is to compare two
executions of the Markov Chain starting from different states. A coupling is a joint distribution of the
state sequences of both executions in which the marginal distribution of each is identical to that of the
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Markov Chain. If we can find a way to couple the executions in a way that they are likely to converge to
the same state at time ¢ (except with failure probability 1/2e) then the Markov Chain is guaranteed to
have mixed by time ¢.

It would take some time to unwrap this concept. If you are curious there are several good examples
in Chapter 8 of the Markov Chain textbook by Levin and Peres. One of their examples is precisely the
transposition shuffle. It is advanced but let me try to reproduce it to give you a flavor of how mixing is
argued.

Proposition 4. The mizing time of the unconstrained transposition shuffle for an n-card deck (with loops)
is O(n?).

Proof (assumes knowledge of probability). Here is a somewhat unintuitive way to implement the transpo-
sition shuffle. At each step, choose two random numbers X and Y between 1 and n. Swap the card labeled
X with the card in position Y. For example, if the current state is 326541 and X = 5,Y = 3 are chosen,
then the 5-card is swapped with the card in position 3, which is 6. The Markov Chain will transition to
325641.

Let’s try to understand what happens if two executions of the Markov Chain with different start states
carry out the same sequence of transitions X;Y7, XoYs,.... As an example, suppose that at some point in
time they have reached states u = 542361 and v = 614352. The common transition is X = 4 (the red card)
and Y =5 (the underlined card). After the swap the two cards in position Y (the underlined position) are
guaranteed to match: They both equal X. In this example the move will create a new match (in position
5) without destroying any old ones (such as the one in position 4). Indeed, the new states v’ = 562341 and
v/ = 615342 now match in both position 4 and position 5. The common transition resulted in an extra
match.

An extra match does not always occur: If the X-card happened to already match in u and v the
transition would not have earned us any extra matches. Neither would it have if the cards at position Y
happened to be identical. In either case, however, the number of matches would not decrease (even though
the set of matching cards might change). The additional match is created whenever the X-cards do not
match and the cards in position Y are different. If there are m matches between u and v, the probability
of this event is (n — m)?/n? because X and Y are random and independent.

In summary, assuming there are m matches in any given step, there will be at least m+1 matches in the
next step with probability (n—m)?/n? and at least m with the remaining probability. The number of steps
that it takes for the extra match to occur is a geometric random variable with probability p = (n—m)?/n2.
The average of such a random variable is 1/p = n?/(n — m)2. The coupled Markov Chains have to take
an average of n?/(n —m)? steps to get the extra match.

In the worst case, the initial states of the two Markov Chains will have zero matches. It will take a
single step to go to one match, an average of n?/(n—1)? steps to go to two matches, and so on. By linearity
of expectation, the total average number of steps to go all the way up to n matches is

n? n? 2 1

n-_ 2 1 _ 2

Markov’s inequality tells us that O(n?) steps are also sufficient for the states to coalesce with probability
1/2e (or any other constant). O

Even if you didn’t follow this argument two points should stand out. First, the mixing time is polynomial
in n while the number of states is exponential. For a theorist polynomial-time algorithms indicate efficiency.
Once we know that polynomial mixing time is within reach we can try to optimize further. In this example
the actual mixing time turns out to be not quadratic but almost linear—O(nlogn) to be precise.

The second lesson is that even for a Markov Chain as simple as shuffling cards by transposition bounding
the mixing time takes some ingenuity. Bounding mixing times is a popular sport for mathematicians,
statisticians, physicists, and computer scientists of all stripes. This endeavor keeps some employed and
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others entertained, but the downside is that there is no truly systematic method for telling when your
Markov Chain will mix. I have no idea, for example, what the mixing time of the constrained transposition
shuffle is. (This would have made for an amazing final project!)

Bounding mixing times is more than just an intellectual exercise. Suppose you have designed a Markov
Chain for your favorite distribution and have been running it for a while. How do you know when to
stop? In the end all the chain produces is some configuration. How can you tell whether it is truly
random? Randomness is notoriously difficult to test, especially for complex distributions like the ones we
need Markov Chains to sample from in the first place.

4 The Ising model

The Ising model is a telling example that illustrates both the power and the challenges of Markov Chain
Monte Carlo. It is a statistical model of a ferromagnet. There are n particles occupying the vertices of
some interaction graph. Each particle can be have positive (z; = +) or negative (z; = =) spin. The energy
H(zy,...,zy,) of the configuration is calculated by taking multiplying the spins along the edges and adding
everything up:
H(xzy,...,zp) = — Z ity
ij is an edge

For example, if the interaction graph is the cycle C, with the vertices 1,...,n in order, the energy is
—(x1m2 + 23 + -+ - + TRTT).

The effect of the minus sign is that configurations in which the spins align have lower energy. We would
expect a ferromagnet to favor such alignment. There are two configurations of lowest energy, the ones
where all the spins equal +1 and —1, respectively. We will denote them by @ and ©. Statistical physics
predicts that what we will typically see is not necessarily one of the lowest energy configurations, but that
the low-energy configurations are more likely than the others.

In the Gibbs distribution each of the 2™ configurations {+, -}" may occur with some probability. The
probability of configuration x = (z1,...,x,) is

—Z ™)

Z is a proportionality constant (called the partition function) that makes the probabilities add up to
1, namely Z = ) e PH™) The number 8 > 0 is a parameter called the inverse temperature. As
approaches zero (infinite temperature), the numerator approaches 1 and the Gibbs distribution becomes
uniform over all possible spins. The ferromagnet does not favor one state over another. When g approaches
infinity (zero temperature), the effect of the exponent is that the lowest energy configurations tower above
all others. The Gibbs distribution becomes uniform over @ and ©.

For other values of 3, any of the 2" configurations is a possible outcome, but their probabilities are dif-
ferent. How different? To get a sense let’s calculate it for the 3-cycle C'5. There the extreme configurations

9(x) =

@ = +++ and © = --- have energy —3 and the remaining six all have energy 1. The Gibbs distribution is
38 h e P
9(®) =9(8) = —  g(any other) = —

The numbers are not important. The extreme configurations are more likely than the others, with £
controlling the difference in probabilities.

Physicists are interested in what happens when n is large. In a typical configuration do the spins tend
to align or balance out? Apart from some special cases direct calculations are difficult. An appealing
alternative is to look at random samples from the Gibbs distribution. This is where Markov Chain Monte
Carlo comes in handy.

It is not too difficult to set up a Markov Chain for the Ising model via Metropolis-Hastings. For
Ising-like models there is an alternative that describes the physical process of reaching steady state more
faithfully.



Glauber dynamics

Algorithm Glauber (Glauber dynamics for the Ising model)

1 Choose an initial configuration x.

2 Until you are happy,

3 Choose a random index .

4 FErase the spin z;.

5 Resample z; from the conditional Gibbs distribution (7) given all spins except x;.

Glauber dynamics is set up to satisfy the detailed balance condition (5). Here is why. For concreteness
suppose i = 1 and we are considering a transition from state x = -a to state x’ = +a. The transition
probability T'(x’|x) is the conditional probability g(+ala), so the left-hand side of (5) is

T(x'|x)g(x) = g(+a|?a)g(-a) = g(+a|7a)g(-a|7a)g(?a),

where 7a is the event that spins 2 to n equal a, and g(?a) is its marginal probability. By symmetry
T(x|x")g(x) is exactly the same.

To implement Glauber dynamics we must figure out how to sample from the conditional Gibbs dis-
tribution given all but one spin. That is where the Gibbs distribution shows its worth. To be specific,
suppose the interaction graph is Cg and the current configuration is ++-+-+. Suppose Glauber picks i = 4
in step 3. In step 4 it erases x4 = + to obtain the partial configuration a = ++-7-+.

To pick the next move we need the conditional probabilities of x4 = + and x4 = - given x is of the form
++-7-+. The energies —(x1x9 + Tows + w314 + 1425 + X526 + xe21) Of the two candidate configurations
+a = ++-+-+ and -a = ++---+ for the next state differ only in the red terms indexed by the two edges
incident to x4. Specifically,

H(wyxox3+506) — H(212003-7576) = —(73 + 5) + (—23 — 5) = —2(73 + 25).

In particular,
H(+a)  H(-a) = H(s+=+=+) = H(++=-4) = =2+ (1) + (~1)) = 4 0

We now have everything we need to find the conditional probabilities g(+a|?a) and g(-al?a). Their
ratio equals the ratio of the unconditional probabilities g(+a)/g(-a). By the Gibbs formula (7) this equals
e AUH(ra)=H(=2)) "and by (8) this is e=**. Thus g(+a|?a)/g(-a|?a) = e~*?, but also g(+a|?a)+g(-a|?a) = 1
because probablilities must add up to 1. We solve these equations and get

1 1

g(+a|7a) = 14 48 g(-al7a) = 14 e 18°

This transition is illustrated in Figure 5. The general update rule for the spin of ¢ is

1
x; = b with probability PR where s is the total spin of the neighbors of i.
e

There is an important point about this formula. The only relevant information is the difference in
energies (8). This number, in turn, is extremely easy to calculate. It only depends on the spins of the
neighbors of x;. The reason is that x; is conditionally independent of the rest of the state given the
spins at its neighbors. Probability distributions of this type are called graphical models. The complexity
of computing a transition in a graphical model of degree d can be at most 2¢, a far cry from 2". The
complexity is linear in d for the Ising model.
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FIGURE 5: A transition of the Glauber dynamics on interaction graph Cj.

Phase transitions

Mixing visualizes nicely in the Glauber dynamics for the Ising model. In Figure 6 I plotted the state
obtained by running 1000 steps of Glauber dynamics on the 16 x 16 grid. The vertices of the interaction
graph are pairs of integers (x,y) modulo 16 and the edges are those pairs whose x or y values (not both)
differ by one. The initial state is the extreme © configuration. At low temperature there is hardly any
movement. Only a handful of spins turn positive. As the temperature increases regions of + spins start
forming, but the - spins still dominate. In the high temperature regime the + and - spins roughly balance.
The average spin is close to zero.

FIGURE 6: State of Glauber dynamics on the 16 x 16 interaction grid at step 1000 at inverse
temperatures (a) 1 (b) 0.7 (¢) 0.3 (d) 0.05. Light and dark squares represent - and + spins.
The initial configuration is ©.

The Ising model on the grid exhibits a phase transition: There is a specific value of 5* (around 0.44)
at which the average spin drops to zero (for large n). This is presumably the temperature at which the
system demagnetizes. Interestingly, the Markov Chain starts mixing rapidly at exactly the same §*.

What does this physics mumbo-jumbo have to do with Great Algorithms? Energy is nothing but the
loss function. You can imagine cooking up a loss function over songs that favors the type of music you
like. A sample from the Gibbs distribution would be the next item on your playlist.
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