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Question 1

For each of the following claims about the ‘inner product mod 2” function IP : {0, 1}n × {0, 1}n → {0, 1}

IP (x, y) = x1y1 + x2y2 + · · ·+ xnyn mod 2.

say if it is true or false (for all sufficiently large n). Prove your assertion (referring to results from the lecture notes
if needed).

(a) IP has a width-4 read-once branching program when the input is read in order x1, y1, . . . , xn, yn.

Solution: True. The state of the branching program at time 2t is determined by a single register z storing
the value x1y1 + · · · + xtyt mod 2. At time 2t + 1 another register x also stores the last seen x-value xt+1.
Specifically, the transitions f1, f2, . . . , f2n are

f1(start, x1) = (0, x1), f2((z, x), y1) = (z + xy1, 0), f3((z, x), x2) = (z, x2), f4((z, x), y2) = (z + xy2, 0)

and so on. At time 2n the register z contains the value IP (x, y) and the program accepts iff this value is 1.

(b) IP has a width-(2n − 1) read-once branching program when the input is read in order x1, . . . , xn, y1, . . . yn.

Solution: False. If it did there would have to be two distinct strings x ̸= x′ that reach the same state after
the first n bits are read. Then for every y the branching program must output the same value on input (x, y)
and (x′, y). Let i be a position in which the two differ, namely xi ̸= x′i. Let y be the string that has a 1 in
position i and 0 everywhere else. Then IP (x, y) = xi ̸= x′i = IP (x′, y), so the values IP (x, y) and IP (x′, y)
are different. Therefore the branching program cannot compute IP .

(c) IP has deterministic query complexity 2n.

Solution: True. IP evaluated on the all-ones input has sensitivity 2n because flipping any variable changes
the value of IP . As query complexity is lower bounded by sensitivity it must also be 2n.

(d) IP has a depth-4 AND/OR circuit of size at most n2.

Solution: False. If this was true for IP it would also be true for n-bit PARITY because it is a restriction
of IP , i.e., PARITY (x) = IP (x, 11 · · · 1). In Lecture 2 we showed that PARITY requires depth-4 size

2Ω(n1/3), which is larger than n2 asymptotically.

Question 2

A parity decision tree (PDT) is a generalized type of decision tree that can query parities of arbitrary subsets of
the variables. For example this is a depth-2 PDT for the function “x1, x2, and x3 are all equal”.
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Show that



(a) Every depth-d PDT can be computed by a F2-polynomial (+ is xor, × is and) of degree at most d.
(Hint: Modify the proof of Claim 4 from Lecture 4.)

Solution: First consider a “special” PDT that evaluates on 1 on exactly one path like in the example. This
function is an AND of the XORs queried at each node, where each XOR is shifted by 1 if the answer is
zero. For example, the function computed by the above PDT is (x1 + x2 + 1)(x2 + x3 + 1). Viewed as a
polynomial, this is a product of ℓ linear functions where ℓ is the length of the path, so it has degree ℓ. The
function computed by a general PDT is a sum of such special decision trees, one for each path that leads to
a 1-leaf. Therefore its degree cannot be larger than the length of the longest path, that is the PDT depth.

(b) AND of n inputs requires PDT depth n. (Use part (a).)

Solution: The F2-polynomial computing AND is x1 · · ·xn, so AND has degree n. Since this representation
is unique any PDT computing AND must also have degree n. By part (a) it must have depth n.

(c) MAJORITY on n inputs requires PDT size Ω(2n
ϵ
) for some constant ϵ > 0.

(Hint: Convert the PDT to an AND/OR/PARITY circuit.)

Solution: A size-s PDT can be simulated by a depth-3 AND/OR/PARITY circuit of size at most s(n+1):
Each path leading to a 1-leaf is an AND of at most n parities by the argument in part (a), and the PDT
is an OR of at most s such paths. In Lecture 2 we showed that MAJORITY on n inputs requires depth-3
AND/OR/PARITY circuit size 2Ω(n1/6), so s(n + 1) must be at least as large as this number. Therefore

s ≥ 1/(n+ 1) · 2Ω(n1/6) = 2Ω(n1/6).

Question 3

Let BPSAT be the decision problem whose input is a branching program B and whose Y ES instances are those
B that accept at least one of their inputs. Let ROBPSAT be the analogous decision problem for read-once
branching programs. Argue that

(a) BPSAT and ROBPSAT are in NP.

Solution: The NP-relation consists of pairs (B, x) where B is a branching program (read-once in the case of
ROBPSAT ) and x is an input accepted by B. Checking whether B accepts x or not amounts to simulating
B on x which can be done in polynomial time, in fact in linear time in your favorite programming language:
The simulation keeps track of the state the branching program is in from left to right and accepts iff an
accept state is reached.

(b) ROBPSAT is in P.

Solution: A branching program accepts some input if and only if there exists a sequence of possible
transitions from the start state to an accept state. Viewing the branching program as a directed graph
with the edges representing possible transitions, checking whether B is a YES instance of ROBPSAT
amounts to verifying the existence of a path from the start state to the accept state in this graph. This can
be done in linear time in any reasonable programming language via breadth-first or depth-first search (so in
polynomial time on a Turing Machine).

(c) BPSAT is NP-complete.
(Hint: Reduce from SAT to BPSAT .)

Solution: In Lecture 3 we showed that any DNF can be represented by a width-3 branching program. By
the same reasoning this is true for CNF. As the CNF is read left to right, two of the states track whether
the current clause has been satisfied. After the clause has been read, the branching program transitions to
the remaining rejecting state and stays there if the clause evaluates to false. Unless the branching program
terminates in this state the input is accepted.

This transformation from CNF to branching programs is efficient and gives a reduction from SAT to BPSAT :
CNF instance ϕ is mapped to branching program B, and a candidate solution x for B is mapped back to



itself. In the notation of Lecture 6, inst(ϕ) = B and sol(x) = x. This reduction maps satisfying assignments
of ϕ to satisfying assignments of B (as required by the definition) because ϕ and B compute the same
function by construction.


