Question 1

Call a function k-uncertifiable if for every subset of k inputs, no partial assignment to those inputs fixes the function value to 1 . Show the following:
(a) $\operatorname{DISTINCT}(x, y)=\left(x_{1} \neq y_{1}\right)$ OR \cdots OR $\left(x_{n} \neq y_{n}\right)$ has a decision tree of size $O\left(2^{n}\right)$.

Solution: The following decision tree solves DISTINCT. Read x_{1} and then y_{1}. If they are different output zero, if they are equal recursively solve DISTINCT on $2 n-2$ inputs. The size of this decision tree satisfies the recurrence $s(n)=2 s(n-1)+2$ with initial condition $s(1)=4$ which solves to $s(n)=3 \cdot 2^{n}-2$.
(b) If ϕ is a DNF for a k-uncertifiable function then all terms of ϕ must have width more than k.

Solution: We argue the contrapositive. If ϕ has a term of width k or less then there is an assignment to its k variables that forces the value of ϕ to 1 so ϕ is k-certifiable.
(c) A size- s DNF for a k-uncertifiable function can accept at most a $s \cdot 2^{-k-1}$-fraction of all possible inputs.

Solution: Let $\phi_{1}, \ldots, \phi_{s}$ be the terms of the DNF ϕ. By a union bound, for a random input x,

$$
\mathrm{P}[\phi \text { accepts } x] \leq \sum_{i=1}^{s} \mathrm{P}\left[\phi_{i} \text { accepts } x\right] .
$$

By part (b), each ϕ_{i} has at least $k+1$ literals. The input x is not accepted unless all of them are true, which can happen with probability at most $2^{-(k+1)}$. So the probability that ϕ accepts x can be at most $s \cdot 2^{-k-1}$.
(d) The function $E Q U A L=$ not $D I S T I N C T$ requires DNFs of size 2^{n}. Use part (c).

Solution: $E Q U A L$ is $(2 n-1)$-uncertifiable: Consider a partial assignment to any $2 n-1$ variables, say all except for y_{n}. If $x_{1} \ldots x_{n-1} \neq y_{1} \ldots y_{n-1}$ then $f(x, y)$ is fixed to zero. Otherwise, setting y_{n} to the negation of x_{n} sets $f(x, y)$ to zero. In either case $f(x, y)$ is unfixed by the partial assignment. Since x and y are equal with probability 2^{-n}, by part (c) any size- s DNF for EQUAL must satisfy $s \cdot 2^{-2 n} \geq 2^{-n}$, so $s \geq 2^{n}$.
(e) DISTINCT requires decision trees of size 2^{n}. Use part (d).

Solution: The decision tree sizes of f and not f are equal as one can be obtained by the other by relabeling the value at each leaf with its negation. In particular, if DISTINCT had a decision tree of size 2^{n} so would $E Q U A L$. As DNF size is upper bounded by decision tree size this would contradict part (d).

Question 2

Recall the $I N J$ function from Lecture 2:

$$
\operatorname{INJ}\left(x_{1}, \ldots, x_{n}\right)=A N D_{i \neq j} \operatorname{DISTINCT}\left(x_{i}, x_{j}\right), \quad x_{i} \in\{0, \ldots, m-1\} .
$$

Assume $m \geq n, n$ and m are both powers of 2 , and elements of $\{0, \ldots, m-1\}$ are specified by their bit representation. Show the following:
(a) $I N J$ is $(n \log n-1)$-uncertifiable when $m=n$. (Optional: Is this true when $m>n$?)

Solution: By symmetry it is enough to prove this when one of the bits of x_{n} is missing. If x_{1}, \ldots, x_{n-1} are not distinct then $I N J$ is fixed to zero. If they are distinct then the two choices for the missing bit of x_{n} yield two distinct values for x_{n}. If both of them appear among x_{1}, \ldots, x_{n-1} the value is again fixed to zero. If not then one of them appears and the other one doesn't so the value of $I N J$ depends on the missing bit.

The general case is modeled by the following combinatorial problem. A bipartite covering of the complete graph K_{n} on n vertices is a collection of complete bipartite graphs $X_{1} \times Y_{1}, \ldots, X_{k} \times Y_{k}$ such that their union covers all $\binom{n}{2}$ possible edges. The size of the covering is $\left|X_{1}\right|+\left|Y_{1}\right|+\cdots+\left|X_{k}\right|+\left|Y_{k}\right|$. INJ is ($n \log n-1$)-uncertifiable if and only no bipartite covering of K_{n} of size less than $n \log n$ exists. Proof sketch: If a bipartite covering of size s exists, then a certificate of the same size is obtained by setting the i-th bit of all items in X_{i} and Y_{i} to 0 and 1, respectively. Conversely, an s-certificate for $I N J$ can be represented by a size- s covering. Similar problems have been studied (see these papers by Alon and by Jukna and Kulikov and references within). I couldn't work out this variant or find a reference for it; it can be a possible project if you are interested.
(b) INJ requires DNFs of size at least n ! when $m \geq n$.
(Hint: Reduce to the case $m=n$ and use part (c) of question 1.)
Solution: $I N J$ with $m>n$ restricts to $I N J$ with $m=n$ by setting all but say the $\log n$ least significant bits of each item to zero, so any DNF size lower bound for $m=n$ also applies to $m>n$. When $m=n$, are n^{n} possible inputs $\left(x_{1}, \ldots, x_{n}\right)$ out of which $n!$ have all items distinct, so the fraction of satisfying inputs is $n!/ n^{n}$. Therefore any DNF must have size at least $\left(n!/ n^{n}\right) \cdot 2^{n \log n}=n^{n}$. Another way of saying this is that every term must look at all inputs so it can accept exactly one. Therefore there must be n ! terms to cover all of them.
(c) INJ has CNFs (ANDs of ORs of literals) of size $\binom{n}{2} m$.

Solution: DISTINCT (x, y) can be written as an $O R$ over all possible assignments $t \in[m]$ of the predicate $(x=t)$ AND $(y=t)$ giving a CNF representation of size m. (For a slightly larger representation one can use the decision tree of problem 1(a)). Therefore $I N J$ can be represented as an AND of $\binom{n}{2}$ ANDs of m ORs giving a CNF of size $\binom{n}{2} m$.
(d) $I N J$ requires CNFs of size at least m for any $n \geq 2$. (Hint: Use part (d) of question 1.)

Solution: When $n=2, I N J$ is DISTINCT on $2 \log m$ input bits so it requires CNF size 2^{n} by 1 (d) (a CNF for f can be converted to a DNF for not f of the same size using de Morgan's laws so minimum CNF size for f equals minimum DNF size for NOT f).
I don't know how to solve this problem when $n>2$. In fact, the claim is false when $n>m$ as $I N J$ is then always false. I was hoping that other values of n can be reduced to $n=2$ by restriction, but restricting in this question changes the value of m affecting the bound. It may still be possible to prove that Not $I N J$ is k-uncertifiable for sufficiently large k and use 1 (c). At first I thought that not $I N J$ is $(2 \log m-1)$ uncertifiable for every $m=n$ but this turns out to be false when m and n are small: If $n=m=4$ then NOT INJ has a 3 -certificate, namely "the first bits of x_{1}, x_{2}, and x_{3} are all zero." As there are only four possible values this forces two of them to be equal, i.e., not $I N J$ to evaluate to one. This can be another research project...

Question 3

Let $f\left(x_{1}, \ldots, x_{m}\right)$ be a boolean function and y_{1}, \ldots, y_{n} be another set of varaibles. A projection of f is a function obtained by replacing each x_{i} with one of the literals $y_{1}, \ldots, y_{n}, \overline{y_{1}}, \ldots, \overline{y_{n}}$ or one of the constants 0,1 . We say f projects to g if there exists a projection of f that equals the function $g\left(y_{1}, \ldots, y_{n}\right)$.
(a) The AND-OR tree on n inputs is defined by the recursive formula

$$
A O T(x, y, z, w)=(A O T(x) \text { OR } A O T(y)) \text { AND }(A O T(z) \text { OR } A O T(w))
$$

where $x, y, z, w \in\{0,1\}^{n / 4}$ and n is a power of four. The base case is $A O T(x)=x$. Show that $A O T$ on n^{2} inputs projects to PARITY on n inputs for every n that is a power of two. (Hint: Use induction.)

Solution: AOT on four inputs projects to PARITY of two bits because $x \oplus y$ equals (x OR NOT y) AND (NOT x OR y). Assuming the claim is true for n, we can represent $\operatorname{PARITY}(x, y)$ for a $2 n$-bit string (x, y) as
$\operatorname{PARITY}(x) \oplus \operatorname{PARITY}(y)=(\operatorname{PARITY}(x)$ OR Not $\operatorname{PARITY}(y))$ AND $($ Not $\operatorname{PARITY}(x)$ or $\operatorname{PARITY}(y))$.

By inductive assumptions, $\operatorname{PARITY}(x)$ and $\operatorname{PARITY}(y)$ are projections of $A O T$ on n^{2} inputs, so $\operatorname{PARITY}(x, y)$ is a projection of $A O T$ on $4 n^{2}=(2 n)^{2}$ inputs as desired.
(b) Use part (a) and facts about PARITY from class to show that AOT requires depth- d AND/OR circuits of size $2^{\Omega\left(n^{1 / 2(d-1)}\right)}$.

Solution: If AOT on $n=m^{2}$ inputs had such circuits of size s by part (a) so would PARITY on m inputs, so s would have to be at least $2^{\Omega\left(m^{1 /(d-1)}\right)}=2^{\Omega\left(n^{1 / 2(d-1)}\right)}$.
(c) Valiant's Theorem states that there exists a constant $c>1$ for which recursive majority on at most n^{c} inputs projects to MAJORITY on n inputs. Recursive majority is the function

$$
R M A J(x, y, z)=M A J O R I T Y(R M A J(x), R M A J(y), R M A J(z))
$$

where $x, y, z \in\{0,1\}^{n / 3}$ and n is a power of 3 . The base case is $R M A J(x)=x$. Assuming Valiant's theorem, show that $A O T$ requires depth- d AND/OR/PARITY circuits of size $2^{\Omega\left(n^{\varepsilon / d}\right)}$ for some constant $\varepsilon>0$.

Solution: We first show that $A O T$ on 16 inputs projects to majority on 3 inputs. One way to obtain this projection is to first represent $\operatorname{MAJORITY}(x, y, z)$ as the CNF (x OR y) AND (y OR z) AND (z OR x) (at least two out of three must be true). This can be written as, for example
$A O T(x, y, y, z)$ AND $A O T(z, x, 1,1)=A O T(A O T(x, y, y, z), \operatorname{AOT}(0,0,0,0), A O T(z, x, 1,1), A O T(0,0,0,0))$.
By the same inductive argument as in part (a), $A O T$ on $n=16^{d}$ inputs projects to $R M A J$ on $3^{d}=n^{\left(\log _{1} 63\right) d}$ inputs, which itself projeccts to MAJORITY of n^{ϵ} inputs for some $\epsilon>0$. As this function requires AND/OR/PARITY circuits of size at least $\Omega\left(2^{n^{\epsilon} / 4 d}\right)$ so must $A O T$.

Question 4

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has rational degree at most d (over \mathbb{F}_{2}) if
there exist polynomials p and q of degree at most d such that $p f=q$ and $p \neq 0$.
($a=b$ means $a(x)=b(x)$ for all x.) Show that for any given f,
(a) (1) implies
there exists $r_{0} \neq 0$ of degree at most d such that for every $x, f(x)=0$ implies $r_{0}(x)=0$, or there exists $r_{1} \neq 0$ of degree at most d such that for every $x, f(x)=1$ implies $r_{1}(x)=0$.

Solution: If $q \neq 0$ set $r_{0}=q$. As $p f=q$, the zeros of q must contain all the zeros of p. If $q=0$, set $r_{1}=p$. As $p f=0, p(f+1)=p$ so whenever f equals one $p f$ must equal zero and so must p.
(b) (2) implies (1).

Solution: In the first case $r_{0}(f+1)$ must always equal zero so we can choose $p=q=r_{0}$. In the second case $r_{1} f$ must always equal zero so we can choose $p=r_{1}$ and $q=0$.
(c) (11) implies
there exists a function g such that for all polynomials p and q of degree less than $n-d, g \neq p f+q$.
(Hint: Try a proof by contradiction.)
Solution: Assume (3) is false, namely every g has a representation of the form $p f+q$ for some p, q of degree less than $n-d$, but (11) is true so $s f=t$ for some degree- d polynomials s and t with $s \neq 0$. Combining the two equations we obtain that for every g there exists p, q with the given degrees so that $g s=p f s+q s=p t+q s$. The right-hand side is a polynomial of degree strictly less than n. However we can always choose a g so that the left-hand side has degree n. For example, we can take g to be the monomial consisting of all the variables that do not appear in some highest-degree term in s. Then $g s$ must contain the monomial $x_{1} x_{2} \cdots x_{n}$ so it has degree n.
(d) (Optional, requires some \mathbb{F}_{2}-linear algebra) (3) implies (11).
(Hint: $g=p f+q$ is a system of linear equations whose variables are the coefficients of p and q.)
Solution: If the system of linear equations $g(x) \neq p(x) f(x)+q(x)$ as x ranges over $\{0,1\}^{n}$ has no solution in the coefficients of p and q for some g then some linear combination of the equations must give a contradiction. Namely, there must exist a (nonzero) function r such that $\sum g(x) r(x) \neq \sum(p(x) f(x)+q(x)) r(x)$ for all p and q of degree less than $n-d$. The summation is over all $x \in\{0,1\}^{n}$. We will show that both r and $f r$ can have degree at most d giving the representation $r \cdot f=f r$ of the desired form.
As the left-hand side does not depend on p or q the right-hand side must take the same value for all p, q. By setting $p=q=0$ we get that this value must be zero, namely

$$
\sum(p(x) f(x)+q(x)) r(x)=0 \quad \text { for all } p, q \text { of degree less than } n-d
$$

Setting p to zero we get that $\sum q(x) r(x)=0$ for all q of degree less than $n-d$. The only monomial m for which $\sum m(x)=1$ is the degree- n monomial $x_{1} \cdots x_{n}$, so $q(x) r(x)$ cannot contain this monomial for every choice of q. Therefore r cannot contain any monomials of degree greater than d because q could then be chosen to equal the complementary monomial. In conclusion, r can have degree at most d. By the same argument, choosing $q=0$ gives the constraint $\sum p(x)(f(x) r(x))=0$ for all p of degree less than $n-d$, so the degree of $f r$ is also at most d.
(e) f has rational degree at most $\lceil n / 2\rceil$. Use part (d).

Solution: By part (d) it is sufficient to show there exists a g that cannot be represented as $p f+q$ for p and q of degree strictly less than $n-\lceil n / 2\rceil=\lfloor n / 2\rfloor$. To do this we count the number of possible representations of this form. A degree- d polynomial is specified by its coefficients, which correspond to subsets of $\{1, \ldots, n\}$ of size at most d. When $d<\lfloor n / 2\rfloor$ this number is strictly less than $2^{n} / 2$ because the subsets of size at most d and their complements do not cover all possible sets. Therefore there are fewer than $2^{2^{n} / 2}$ choices for each of p and q and so fewer than $2^{2^{n}}$ representations of type $p f+q$. At least one of the $2^{2^{n}}$ functions g does not have a representation.

