
CSI 5138: Computational Complexity Homework 1 Solutions
University of Ottawa, Fall 2023

Question 1

Call a function k-uncertifiable if for every subset of k inputs, no partial assignment to those inputs fixes the
function value to 1. Show the following:

(a) DISTINCT (x, y) = (x1 ̸= y1) or · · · or (xn ̸= yn) has a decision tree of size O(2n).

Solution: The following decision tree solves DISTINCT . Read x1 and then y1. If they are different output
zero, if they are equal recursively solve DISTINCT on 2n− 2 inputs. The size of this decision tree satisfies
the recurrence s(n) = 2s(n− 1) + 2 with initial condition s(1) = 4 which solves to s(n) = 3 · 2n − 2.

(b) If ϕ is a DNF for a k-uncertifiable function then all terms of ϕ must have width more than k.

Solution: We argue the contrapositive. If ϕ has a term of width k or less then there is an assignment to its
k variables that forces the value of ϕ to 1 so ϕ is k-certifiable.

(c) A size-s DNF for a k-uncertifiable function can accept at most a s · 2−k−1-fraction of all possible inputs.

Solution: Let ϕ1, . . . , ϕs be the terms of the DNF ϕ. By a union bound, for a random input x,

P[ϕ accepts x] ≤
s∑

i=1

P[ϕi accepts x].

By part (b), each ϕi has at least k+1 literals. The input x is not accepted unless all of them are true, which
can happen with probability at most 2−(k+1). So the probability that ϕ accepts x can be at most s · 2−k−1.

(d) The function EQUAL = not DISTINCT requires DNFs of size 2n. Use part (c).

Solution: EQUAL is (2n− 1)-uncertifiable: Consider a partial assignment to any 2n− 1 variables, say all
except for yn. If x1 . . . xn−1 ̸= y1 . . . yn−1 then f(x, y) is fixed to zero. Otherwise, setting yn to the negation
of xn sets f(x, y) to zero. In either case f(x, y) is unfixed by the partial assignment. Since x and y are equal
with probability 2−n, by part (c) any size-s DNF for EQUAL must satisfy s · 2−2n ≥ 2−n, so s ≥ 2n.

(e) DISTINCT requires decision trees of size 2n. Use part (d).

Solution: The decision tree sizes of f and not f are equal as one can be obtained by the other by relabeling
the value at each leaf with its negation. In particular, if DISTINCT had a decision tree of size 2n so would
EQUAL. As DNF size is upper bounded by decision tree size this would contradict part (d).

Question 2

Recall the INJ function from Lecture 2:

INJ(x1, . . . , xn) = ANDi ̸=jDISTINCT (xi, xj), xi ∈ {0, . . . ,m− 1}.

Assume m ≥ n, n and m are both powers of 2, and elements of {0, . . . ,m− 1} are specified by their bit represen-
tation. Show the following:

(a) INJ is (n log n− 1)-uncertifiable when m = n. (Optional: Is this true when m > n?)

Solution: By symmetry it is enough to prove this when one of the bits of xn is missing. If x1, . . . , xn−1 are
not distinct then INJ is fixed to zero. If they are distinct then the two choices for the missing bit of xn
yield two distinct values for xn. If both of them appear among x1, . . . , xn−1 the value is again fixed to zero.
If not then one of them appears and the other one doesn’t so the value of INJ depends on the missing bit.

The general case is modeled by the following combinatorial problem. A bipartite covering of the complete
graph Kn on n vertices is a collection of complete bipartite graphs X1 × Y1, . . . , Xk × Yk such that their
union covers all

(
n
2

)
possible edges. The size of the covering is |X1| + |Y1| + · · · + |Xk| + |Yk|. INJ is

(n log n−1)-uncertifiable if and only no bipartite covering of Kn of size less than n log n exists. Proof sketch:
If a bipartite covering of size s exists, then a certificate of the same size is obtained by setting the i-th bit
of all items in Xi and Yi to 0 and 1, respectively. Conversely, an s-certificate for INJ can be represented by
a size-s covering. Similar problems have been studied (see these papers by Alon and by Jukna and Kulikov
and references within). I couldn’t work out this variant or find a reference for it; it can be a possible project
if you are interested.

(b) INJ requires DNFs of size at least n! when m ≥ n.
(Hint: Reduce to the case m = n and use part (c) of question 1.)

Solution: INJ with m > n restricts to INJ with m = n by setting all but say the log n least significant
bits of each item to zero, so any DNF size lower bound for m = n also applies to m > n. When m = n, are
nn possible inputs (x1, . . . , xn) out of which n! have all items distinct, so the fraction of satisfying inputs is
n!/nn. Therefore any DNF must have size at least (n!/nn) · 2n logn = nn. Another way of saying this is that
every term must look at all inputs so it can accept exactly one. Therefore there must be n! terms to cover
all of them.

(c) INJ has CNFs (ANDs of ORs of literals) of size
(
n
2

)
m.

Solution: DISTINCT (x, y) can be written as an OR over all possible assignments t ∈ [m] of the predicate
(x = t) and (y = t) giving a CNF representation of size m. (For a slightly larger representation one can use
the decision tree of problem 1(a)). Therefore INJ can be represented as an AND of

(
n
2

)
ANDs of m ORs

giving a CNF of size
(
n
2

)
m.

(d) INJ requires CNFs of size at least m for any n ≥ 2. (Hint: Use part (d) of question 1.)

Solution: When n = 2, INJ is DISTINCT on 2 logm input bits so it requires CNF size 2n by 1(d) (a
CNF for f can be converted to a DNF for not f of the same size using de Morgan’s laws so minimum CNF
size for f equals minimum DNF size for not f).

I don’t know how to solve this problem when n > 2. In fact, the claim is false when n > m as INJ is then
always false. I was hoping that other values of n can be reduced to n = 2 by restriction, but restricting in
this question changes the value of m affecting the bound. It may still be possible to prove that not INJ
is k-uncertifiable for sufficiently large k and use 1(c). At first I thought that not INJ is (2 logm − 1)-
uncertifiable for every m = n but this turns out to be false when m and n are small: If n = m = 4 then
not INJ has a 3-certificate, namely “the first bits of x1, x2, and x3 are all zero.” As there are only four
possible values this forces two of them to be equal, i.e., not INJ to evaluate to one. This can be another
research project...

Question 3

Let f(x1, . . . , xm) be a boolean function and y1, . . . , yn be another set of varaibles. A projection of f is a function
obtained by replacing each xi with one of the literals y1, . . . , yn, y1, . . . , yn or one of the constants 0, 1. We say f
projects to g if there exists a projection of f that equals the function g(y1, . . . , yn).

(a) The AND-OR tree on n inputs is defined by the recursive formula

AOT (x, y, z, w) = (AOT (x) or AOT (y)) and (AOT (z) or AOT (w)),

where x, y, z, w ∈ {0, 1}n/4 and n is a power of four. The base case is AOT (x) = x. Show that AOT on n2

inputs projects to PARITY on n inputs for every n that is a power of two. (Hint: Use induction.)

Solution: AOT on four inputs projects to PARITY of two bits because x⊕y equals (x or not y) and (not x or y).
Assuming the claim is true for n, we can represent PARITY (x, y) for a 2n-bit string (x, y) as

PARITY (x)⊕PARITY (y) = (PARITY (x) or not PARITY (y)) and (not PARITY (x) or PARITY (y)).

https://link.springer.com/chapter/10.1007/978-1-4614-7254-4_2
https://www.sciencedirect.com/science/article/pii/S0012365X08005566#sec4

By inductive assumptions, PARITY (x) and PARITY (y) are projections ofAOT on n2 inputs, so PARITY (x, y)
is a projection of AOT on 4n2 = (2n)2 inputs as desired.

(b) Use part (a) and facts about PARITY from class to show that AOT requires depth-d AND/OR circuits of

size 2Ω(n1/2(d−1)).

Solution: If AOT on n = m2 inputs had such circuits of size s by part (a) so would PARITY on m inputs,

so s would have to be at least 2Ω(m1/(d−1)) = 2Ω(n1/2(d−1)).

(c) Valiant’s Theorem states that there exists a constant c > 1 for which recursive majority on at most nc inputs
projects to MAJORITY on n inputs. Recursive majority is the function

RMAJ(x, y, z) = MAJORITY
(
RMAJ(x), RMAJ(y), RMAJ(z)

)
,

where x, y, z ∈ {0, 1}n/3 and n is a power of 3. The base case is RMAJ(x) = x. Assuming Valiant’s theorem,

show that AOT requires depth-d AND/OR/PARITY circuits of size 2Ω(nε/d) for some constant ε > 0.

Solution: We first show that AOT on 16 inputs projects to majority on 3 inputs. One way to obtain this
projection is to first represent MAJORITY (x, y, z) as the CNF (x or y) and (y or z) and (z or x) (at
least two out of three must be true). This can be written as, for example

AOT (x, y, y, z) and AOT (z, x, 1, 1) = AOT (AOT (x, y, y, z), AOT (0, 0, 0, 0), AOT (z, x, 1, 1), AOT (0, 0, 0, 0)).

By the same inductive argument as in part (a), AOT on n = 16d inputs projects to RMAJ on 3d = n(log1 63)d

inputs, which itself projeccts to MAJORITY of nϵ inputs for some ϵ > 0. As this function requires
AND/OR/PARITY circuits of size at least Ω(2n

ϵ/4d) so must AOT .

Question 4

A function f : {0, 1}n → {0, 1} has rational degree at most d (over F2) if

there exist polynomials p and q of degree at most d such that pf = q and p ̸= 0. (1)

(a = b means a(x) = b(x) for all x.) Show that for any given f ,

(a) (1) implies

there exists r0 ̸= 0 of degree at most d such that for every x, f(x) = 0 implies r0(x) = 0, or
there exists r1 ̸= 0 of degree at most d such that for every x, f(x) = 1 implies r1(x) = 0.

(2)

Solution: If q ̸= 0 set r0 = q. As pf = q, the zeros of q must contain all the zeros of p. If q = 0, set r1 = p.
As pf = 0, p(f + 1) = p so whenever f equals one pf must equal zero and so must p.

(b) (2) implies (1).

Solution: In the first case r0(f + 1) must always equal zero so we can choose p = q = r0. In the second
case r1f must always equal zero so we can choose p = r1 and q = 0.

(c) (1) implies

there exists a function g such that for all polynomials p and q of degree less than n−d, g ̸= pf+q. (3)

(Hint: Try a proof by contradiction.)

Solution: Assume (3) is false, namely every g has a representation of the form pf + q for some p, q of degree
less than n−d, but (1) is true so sf = t for some degree-d polynomials s and t with s ̸= 0. Combining the two
equations we obtain that for every g there exists p, q with the given degrees so that gs = pfs+ qs = pt+ qs.
The right-hand side is a polynomial of degree strictly less than n. However we can always choose a g so that
the left-hand side has degree n. For example, we can take g to be the monomial consisting of all the variables
that do not appear in some highest-degree term in s. Then gs must contain the monomial x1x2 · · ·xn so it
has degree n.

(d) (Optional, requires some F2-linear algebra) (3) implies (1).
(Hint: g = pf + q is a system of linear equations whose variables are the coefficients of p and q.)

Solution: If the system of linear equations g(x) ̸= p(x)f(x)+q(x) as x ranges over {0, 1}n has no solution in
the coefficients of p and q for some g then some linear combination of the equations must give a contradiction.
Namely, there must exist a (nonzero) function r such that

∑
g(x)r(x) ̸=

∑
(p(x)f(x) + q(x))r(x) for all p

and q of degree less than n − d. The summation is over all x ∈ {0, 1}n. We will show that both r and fr
can have degree at most d giving the representation r · f = fr of the desired form.

As the left-hand side does not depend on p or q the right-hand side must take the same value for all p, q. By
setting p = q = 0 we get that this value must be zero, namely∑

(p(x)f(x) + q(x))r(x) = 0 for all p, q of degree less than n− d.

Setting p to zero we get that
∑

q(x)r(x) = 0 for all q of degree less than n − d. The only monomial m for
which

∑
m(x) = 1 is the degree-n monomial x1 · · ·xn, so q(x)r(x) cannot contain this monomial for every

choice of q. Therefore r cannot contain any monomials of degree greater than d because q could then be
chosen to equal the complementary monomial. In conclusion, r can have degree at most d. By the same
argument, choosing q = 0 gives the constraint

∑
p(x)(f(x)r(x)) = 0 for all p of degree less than n − d, so

the degree of fr is also at most d.

(e) f has rational degree at most ⌈n/2⌉. Use part (d).

Solution: By part (d) it is sufficient to show there exists a g that cannot be represented as pf + q for p and
q of degree strictly less than n−⌈n/2⌉ = ⌊n/2⌋. To do this we count the number of possible representations
of this form. A degree-d polynomial is specified by its coefficients, which correspond to subsets of {1, . . . , n}
of size at most d. When d < ⌊n/2⌋ this number is strictly less than 2n/2 because the subsets of size at most
d and their complements do not cover all possible sets. Therefore there are fewer than 22

n/2 choices for each
of p and q and so fewer than 22

n
representations of type pf + q. At least one of the 22

n
functions g does not

have a representation.

