
CSI 5138: Computational Complexity Homework 2 Solutions
University of Ottawa, Fall 2023

Question 1

The intersection function INT : {0, 1}n × {0, 1}n → {0, 1} is INT (x, y) = (x1 and y1) or · · · or (xn and yn).
Show that

(a) INT requires a (deterministic) read-once branching program of width 2n (in the order x1, . . . , xn, y1, . . . , yn).

Solution: If the width is less than 2n there exist two distinct strings x and x′ that reach the same state
after being read. Without loss of generality, these strings differ in position i where xi = 1 and x′i = 0. If y
is the string that has a one in position i and zero everywhere else then INT (x, y) = 1 but INT (x′, y) = 0.
However the branching program reaches the same final state on these two inputs so it cannot compute INT
correctly on both.

(b) r0(INT ) ≤ 2n, where r0(f) is the size |X| · |Y | of the largest rectangle X × Y for which f(x, y) = 0 for all
x ∈ X and y ∈ Y . (Hint: Reduce to IP )

Solution: If INT (x, y) = 0 then xi and yi = 0 for all i so IP (x, y) is also zero. Therefore r0(INT ) ≤ r0(IP ).
In Lecture 3 we showed that if (x, y) is chosen at random from the product set X×Y then P[IP (x, y) = 1] ≥
1/2− 1/2

√
2n/|X||Y |. If IP (x, y) is zero for all (x, y) ∈ X × Y it must be that 1/2− 1/2

√
2n/|X||Y | ≤ 0,

so |X||Y | ≤ 2n.

(c) If f(x, y) can be computed by a width-w read-k-times branching program then f can evaluate to zero on at
most r0(f)w

2k inputs.

Solution: We also showed in Lecture 3 that for every such f there exists a partition of its domain {0, 1}n×
{0, 1}n into at most w2k product sets on which f is constant. The number of inputs on which f equals zero
can be at most the number of such product sets on which f evaluates to zero times the number of inputs in
each product set, which is at most 22k × r0(f).

(d) Use parts (c) and (d) to show that INT requires read-k-times branching program width at least (3/2)n/2k.

Solution: INT takes value zero if and only if xiyi ∈ {00, 01, 10} for all i. By independence, INT takes
value zero with probability (3/4)n. By parts (c) and (d), (3/4)n ≤ r0(f)w

2k ≤ 2nw2k, so w ≥ (3/2)n/2k.

Question 2

Let X be an n by n matrix and f : {0, 1}n2 → {0, 1} be the function

f(X) =

{
1, if f has exactly one column consisting of zeros only,

0, otherwise.

Determine the following quantities up to a constant factor (i.e., in Θ(·) notation). Provide both upper and lower
bound proofs.

(a) the deterministic query complexity D(f)

Solution: This is n2 by an “adversary argument”. Answer the queries of the decision tree by zeros, until
a whole column is queried, in which case the last column query is answered by 1. If the decision tree has
depth strictly less than n2 the queried part of the input X is consistent both with the possibilities f(X) = 0
and f(X) = 1, so the decision tree cannot compute f on all inputs.



(b) the exact degree deg(f) when f is viewed as a real-valued polynomial

Solution: This is also n2, giving also an alternative proof of part (a). We will represent the polynomial
as a function from {0, 1}n → {0, 1} for convenience as this does not affect the degree. Then f(X) =
g(h(X1), . . . , h(Xn)), where X1, . . . , Xn are the columns of X, h is the “zeros only” function, and g is the
“exactly one one” function. The unique polynomial representations of h and g are

h(x1, . . . , xn) = (1− x1) · · · (1− xn) g(y1, . . . , yn) =

n∑
i=1

yi
∏
j ̸=i

(1− yj).

Both h and g contain the degree-n monomials x1 . . . xn and (−1)n−1ny1 · · · yn, respectively, so their compo-
sition f must contain the degree-n2 monomial

∏n
i,j=1Xij .

(c) the sensitivity sens(f)

Solution: This is 2n. If X has exactly two all-zero columns, then changing any of the 2n entries in these
columns flips the value of f showing that the sensitivity is at least 2n. We argue it is at most 2n by cases.
Matrices with 3 or more all-zero columns are insensitive. If there are exactly two, only the 2n entries in
those two can change the value of f from 0 to 1. If there is exactly one all-zero column, then the entry can
be changed from 1 to zero either by destroying this column or creating a new all-zero column. There are n
choices for the first possibility and at most n− 1 for the second as the only way to create an all-zero column
is to flip a 1-entry in it provided it is unique, for a total of at most 2n − 1. Finally, if there are no all-zero
columns, there can be at most n variables that can be flipped to create one.

(d) (Optional) the Monte Carlo randomized query complexity R(f)

Solution: Ω(n2). Justifying this is tricky because the randomized algorithm can be adaptive. We will argue
that any algorithm that makes q queries has probability at most 2q/n2 at distinguishing between the the
distributions X4 of a uniformly random matrix with exactly one 1 per column, and Y4 which is the same as
X4 except that a single random column is all zero. When q < n2/6 the advantage is less than 1/3 so the
randomized algorithm must fail.

We start with the fact that the probability that a q-query algorithm distingushes a n2-size database X1

with a single random item marked P (the prize) from an all-zero database Y1 is (at most) q/n2. Unless
the algorithm hits P in one of the q queries, which happens with probability at most q/n its views will be
identical in X1 and Y1.

Now let Y2 be a random table of size n2 with exactly one 1 per column, and X2 be like Y1 but with an
extra random item marked P. If the cell marked P already contains a 1 the item is marked P1. The q-query
distinguishing advantage of X2 and Y2 can be at most the q-query advantage for X1 and Y1, that is q/n2.
This is because any distinguisher D2 for the former yields a distinguisher D1 with the same query complexity
and advantage for the latter obtained by running D2 on the input for D1 with an additional random 1 in
each column. Under this change of input X2 maps to X1 and Y2 maps to Y1.

Next, let Y3 be like Y2 and X3 be like X2 except that the special column containing P has the 1-item
erased from it. We claim that the q-query advantage of distinguishing X3 from Y3 can be at most twice
the advantage of distinguishing X2 from Y2, that is at most 2q/n2. For suppose D3 distinguishes X3 and
Y3 with advantage ε. When D3 samples the first item marked 1 or P in the special column, the conditional
probability that the item is P is half, in which case D3 would distinguish the corresponding inputs in X2 and
Y2.

Finally, let Y4 be like Y3 and obtainX4 fromX3 by erasing the P. Then the q-query advantage of distingushing
X4 for Y4 is at most that of distingushing X3 from Y3, that is 2q/n2. Given any distinguisher D4 for the
former, a distingusher from the latter can be obtained by pretending that the answer to the P-query is zero.

(e) (Optional; possible project) the quantum query complexity Q(f)



Question 3

The correlation between two strings a, b ∈ {−1, 1}n is the number ⟨a, b⟩/n = (a1b1 + · · · + anbn)/n in the range
[−1, 1]. You will study the classical and quantum query complexities of estimating correlation. An unbiased
estimator for correlation is an algorithm that accepts (x0, x1) with probability 1

2 + 1
2⟨x0, x1⟩/n. The input x =

(x0, x1) is represented as the 2n-bit string x01 · · ·x0nx11 · · ·x1n. Show that

(a) There exists a 2-query randomized unbiased estimator for correlation.

(b) The estimator queries x0i and x1i for a random i and accepts if they are equal. Given the choice of i
acceptance is determined by the value (1 + x0ix1i)/2. The probability of acceptance is therefore the average
of those values, which equals (1/n)

∑
(1 + x0ix1i)/2 = 1

2 + 1
2⟨x0, x1⟩/n.

(c) Any 1-query randomized algorithm has the same acceptance probability on the input distributions

{(X0, X1) : X0 and X1 are the same random n-bit string} and

{(X0, X1) : X0, X1 are independent random n-bit strings}.

(Hint: Argue this for deterministic algorithms first.)

Solution: In both distributions every bit X0i or X1i is an unbiased random bit (1 and −1 with probability
half each). Therefore the distribution of outputs of any algorithm that queries a single bit will be the same
in both cases; it would be the same as if the answer to the algorithm’s query was a random bit. This holds
for deterministic as well as randomized algorithms. (It is a bit easier to think about randomized algorithms
in which i is determined ahead of time which is why I gave the hint.)

(d) There does not exist a 1-query randomized unbiased estimator for correlation.
(Hint: Can the algortihm answer correctly in expectation on both distributions in part (b)?)

Solution: By part (b) the average acceptance probability of any 1-query algorithm must be the same in
both distributions. However the average correlation is zero in the first distribution and one in the second
one. Therefore the algorithm cannot be estimating correlation without bias.

(e) The quantum algorithm

Measure the first qubit of H1Φ
x|+⟩ and accept if it is zero

is a (1-query) unbiased estimator for correlation. Here, |+⟩ is the state (|01⟩+· · ·+|0n⟩+|11⟩+· · ·+|1n⟩)/
√
2n

and H1 is the Hadamard gate applied to the first qubit |b⟩. In ±1 bit representation Φx is the phased-query
gate Φx|bi⟩ = xbi|bi⟩.

Solution: After the phased query the algorithm is in state Φx|+⟩ = (
∑

xbi|bi⟩)/
√
2n. After the Hadamard

query the state becomes

H1Φ
x|+⟩ = 1√

n

∑
i

x0i + x1i
2

|0i⟩+ x0i − x1i
2

|1i⟩.

For each i, this superposition contains exclusively state (+ or −)|0i⟩ if x0i = x1i and state (+ or −)|0i⟩ if
x0i ̸= x1i. Therefore the probability of measuring zero in the first register is exactly the fraction of indices i
for which x0i = x1i, which equals 1

2 + 1
2⟨x0, x1⟩/n by part (a).

(f) (Optional) There is a 1-query quantum unbiased estimator of 1
n

∑
Aijx0ix1j for every n × n orthogonal

(real unitary) matrix A.

Solution: Let A′ be the linear transformation that applies A to the second register if the first register is
|1⟩ and applies the identity to the second register if the first register is |0⟩. Then A′ is unitary because it
is invariant on the subspaces spanned by |01⟩, . . . , |0n⟩ and |11⟩, . . . , |1n⟩ and it is unitary on each (A on
the first, the identity on the second). The algorithm is “Measure the first qubit of H1A

′Φx|+⟩ and accept
if it is zero”. The state A′Φx|+⟩ has amplitude x0i in direction |0i⟩ and amplitude (Ax1)i in direction



x1i. By a calculation as in (c), the amplitude of |0i⟩ in H1A
′Φx|+⟩, i.e., the value ⟨q0i|H⟩1A′Φx|+⟩, equals

(x0i + (Ax1)i)/2
√
n. Therefore the probability of measuring zero equals

1

n

n∑
i=1

(x0i + (Ax1)i)
2

4
=

∑ x20i
4n

+
∑ (Ax1)

2
i

4n
+
∑ x0i(Ax1)i

2n

The first term equals 1/4 because x0i2 = 1 for all i. The second term also equals 1/4 because the orthogonal
matrix A is length-preserving so

∑
(Ax1)

2
i =

∑
x21i = n. The last term equals

∑
Aijx0ix1j/2n, so the

acceptance probability is 1/2 + (
∑

Aijx0ix1j/2n as desired.


