
CSI 5138: Computational Complexity Homework 3 Solutions
University of Ottawa, Fall 2023

Question 1

One method for gauging how hard it is to prove a conjecture C is to investigate if not C is true under the
assumption that P equals NP. If P = NP implies not C then proving C would also prove that P ̸= NP, so a proof
of C (if true) is likely out of reach. Show that the following statements are true assuming P = NP:

(a) The problem “Given a circuit C as input, all assignments are satisfying for C” is in P.

Solution: On input C, apply the polynomial-time algorithm for SAT to the circuit not C and negate the
answer. If all assignments to C are satisfying then not C has no satisfying assignment and the procedure
accepts. Otherwise not C has a satisfying assignment and the procedure rejects.

(b) Polynomial Identity Testing is in P. (Hint: Think of the randomness as a potential NP certificate.)

Solution: In Lecture 7 we showed that for every size-s instance C of polynomial identity testing that does
not compute the identically zero polynomial a random assignment of the inputs from {1, . . . , 3s} evaluates
to zero with probability at most 1/3. In particular every nonzero C has at least one polynomial-size witness
x ∈ {1, . . . , 3s}n such that C(x) does not evaluate to zero. Therefore the set of pairs (C, x) where C(x) ̸= 0
and x ∈ {1, . . . , 3s}n is an NP-relation whose decision version is the complement PIT of polynomial identity
testing. If P equals NP then PIT is in P and so is PIT itself as P is closed under complement.

(c) There is no polynomial-time computable family Gn : {0, 1}n → {0, 1}n+1 of (2n/10, 1/4)-pseudorandom gen-
erators. (Hint: The problem “On input y, does there exists x such that G|x|(x) = y?” is in NP.)

Solution: Every output of Gn is a YES-instance of the problem described in the hint. The probability
that a random string Z in {0, 1}n+1 is a yes instance is at most half because only half of the strings are
possible outputs of Gn. If P equals NP the polynomial-time algorithm D for this problem is a distinguisher
with advantage at least 1 − 1/2 > 1/4. In particular this algorithm can be implemented by a family of
polynomial-size circuits which fits within the required bound of 2n/10 for all sufficiently large n.

Question 2

Assume f : {0, 1}n → {0, 1} is 0.01-unpredictable against size n2. Which of these constructions is an (n2/10, 0.1)-
pseudorandom generator? If you answer no describe a distinguisher for G. If you answer yes show how to convert
a distinguisher for G into a predictor for f (possibly using results from class). Addition denotes (bitwise) xor.

(a) G : {0, 1}2n → {0, 1}2n+2 given by G(x, y) = (x, f(x), y, f(x) + f(y)).

Solution: Yes. If not suppose D has size n2/10 and 0.1-distinguishes (x, f(x), y, f(x) + f(y)) from a
random string. Let D′ be the circuit that takes input (x, a, y, b) and applies D to (x, a, y, a + b). Then D′

has size n2/10 +O(1) and 0.1-distinguishes (x, f(x), y, f(y)) from a random string (x, a, y, b). D′ must then
0.05-distinguish either of those from (x, f(x), y, b). In one case by fixing x (and f(x)) that maximizes the
advantage of D′ we get a 0.05-distinguisher of (y, f(y)) from a random string of size n2/10 + O(1). In the
other case by fixing y and b in an advantage-maximizing way we get a distinguisher of (x, f(x)) from random
of the same advantage and size. In either case by Yao’s lemma f can be 0.05-predicted by size n2/5 +O(1)
contradicting the assumption.

(b) G : {0, 1}nm → {0, 1}(
m
2) (one output for every pair of inputs), with m = 3n, given by

G(x1, . . . , xm) =
(
f(x1) + f(x2), . . . , f(x1) + f(xn), f(x2) + f(x3), . . . , f(xm−1) + f(xm)

)
Solution: No. The output of G includes the three bits f(x1) + f(x2), f(x1) + f(x3), and f(x2) + f(x3)
which always XOR to zero. The distinguisher that computes the XOR of these three bits always accepts

outputs of G but only accepts random strings with probability half, showing that G is not even (O(1), 1/2)-
pseudorandom.

(c) (Optional) G : {0, 1}3n → {0, 1}3n+3 given by G(x, y, z) = (x, y, z, f(x+ y), f(x+ z), f(y + z)).

Solution: I don’t know the answer to this one.

Question 3

In Lecture 3 we showed that the following property of functions f : {0, 1}n×{0, 1}m → {0, 1} separates EQUALITY
(when m = n) from width 2n read-once branching programs:

diffext(f): For every pair x ̸= x′ ∈ {0, 1}n there exists a y ∈ {0, 1}m such that f(x, y) ̸= f(x′, y).

(a) Argue that diffext is 2O(n+m)-constructive, namely describe an efficient algorithm that decides diffext(f)
using oracle access to f and analyze its running time.

Solution: The algorithm loops over all
(
2n

2

)
pairs x ̸= x′. For each of these pairs it tests whether any

y ∈ {0, 1}m violates the condition f(x, y) ̸= f(x′, y). This condition can be checked in time O(n+m), so the
whole algorithm can be implemented in time O((n +m)22n+m). This is at most quadratic in the instance
size 2n+m.

(b) Show that the probability that diffext(R) holds for a random function R is at least 1− 22n−2m−1.
(Hint: Calculate the probability R(x, y) = R(x′, y) for fixed x ̸= x′ and all y and take a union bound.)

Solution: For fixed x ̸= x′ the 22m values R(x, y) and R(x′, y) as y ranges over {0, 1}m are uniform and
independent, so the 2m events R(x, y) = R(x′, y) are independent of probability 1/2 each. Therefore the
probability that R(x, y) = R(x′, y) for all y is exactly 22

m
. By a union bound the probability that there exist

x ̸= x′ for which this is the case is at most
(
2n

2

)
22

m ≤ 22n−1 · 22m .

(c) Use part (b) to show that diffext(f) is 1/2-large (and therefore natural) when m ≥ log(2n).

Solution: When m ≥ log(2n) the probability in part (b) is at least 1 − 1/2 = 1/2 so diffext is 1/2-large
as desired.

