Question 1

One method for gauging how hard it is to prove a conjecture C is to investigate if not C is true under the assumption that P equals NP. If $\mathrm{P}=\mathrm{NP}$ implies not C then proving C would also prove that $\mathrm{P} \neq \mathrm{NP}$, so a proof of C (if true) is likely out of reach. Show that the following statements are true assuming $\mathrm{P}=\mathrm{NP}$:
(a) The problem "Given a circuit C as input, all assignments are satisfying for C " is in P .

Solution: On input C, apply the polynomial-time algorithm for SAT to the circuit not C and negate the answer. If all assignments to C are satisfying then Not C has no satisfying assignment and the procedure accepts. Otherwise nот C has a satisfying assignment and the procedure rejects.
(b) Polynomial Identity Testing is in P. (Hint: Think of the randomness as a potential NP certificate.)

Solution: In Lecture 7 we showed that for every size- s instance C of polynomial identity testing that does not compute the identically zero polynomial a random assignment of the inputs from $\{1, \ldots, 3 s\}$ evaluates to zero with probability at most $1 / 3$. In particular every nonzero C has at least one polynomial-size witness $x \in\{1, \ldots, 3 s\}^{n}$ such that $C(x)$ does not evaluate to zero. Therefore the set of pairs (C, x) where $C(x) \neq 0$ and $x \in\{1, \ldots, 3 s\}^{n}$ is an NP-relation whose decision version is the complement $\overline{P I T}$ of polynomial identity testing. If P equals NP then $\overline{P I T}$ is in P and so is PIT itself as P is closed under complement.
(c) There is no polynomial-time computable family $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ of $\left(2^{n / 10}, 1 / 4\right)$-pseudorandom generators. (Hint: The problem "On input y, does there exists x such that $G_{|x|}(x)=y$?" is in NP.)

Solution: Every output of G_{n} is a YES-instance of the problem described in the hint. The probability that a random string Z in $\{0,1\}^{n+1}$ is a yes instance is at most half because only half of the strings are possible outputs of G_{n}. If P equals NP the polynomial-time algorithm D for this problem is a distinguisher with advantage at least $1-1 / 2>1 / 4$. In particular this algorithm can be implemented by a family of polynomial-size circuits which fits within the required bound of $2^{n / 10}$ for all sufficiently large n.

Question 2

Assume $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is 0.01 -unpredictable against size n^{2}. Which of these constructions is an $\left(n^{2} / 10,0.1\right)$ pseudorandom generator? If you answer no describe a distinguisher for G. If you answer yes show how to convert a distinguisher for G into a predictor for f (possibly using results from class). Addition denotes (bitwise) xor.
(a) $G:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n+2}$ given by $G(x, y)=(x, f(x), y, f(x)+f(y))$.

Solution: Yes. If not suppose D has size $n^{2} / 10$ and 0.1 -distinguishes $(x, f(x), y, f(x)+f(y))$ from a random string. Let D^{\prime} be the circuit that takes input (x, a, y, b) and applies D to $(x, a, y, a+b)$. Then D^{\prime} has size $n^{2} / 10+O(1)$ and 0.1 -distinguishes $(x, f(x), y, f(y))$ from a random string $(x, a, y, b) . D^{\prime}$ must then 0.05 -distinguish either of those from $(x, f(x), y, b)$. In one case by fixing x (and $f(x)$) that maximizes the advantage of D^{\prime} we get a 0.05 -distinguisher of $(y, f(y))$ from a random string of size $n^{2} / 10+O(1)$. In the other case by fixing y and b in an advantage-maximizing way we get a distinguisher of ($x, f(x)$) from random of the same advantage and size. In either case by Yao's lemma f can be 0.05 -predicted by size $n^{2} / 5+O(1)$ contradicting the assumption.
(b) $G:\{0,1\}^{n m} \rightarrow\{0,1\}\binom{m}{2}$ (one output for every pair of inputs), with $m=3 n$, given by

$$
G\left(x_{1}, \ldots, x_{m}\right)=\left(f\left(x_{1}\right)+f\left(x_{2}\right), \ldots, f\left(x_{1}\right)+f\left(x_{n}\right), f\left(x_{2}\right)+f\left(x_{3}\right), \ldots, f\left(x_{m-1}\right)+f\left(x_{m}\right)\right)
$$

Solution: No. The output of G includes the three bits $f\left(x_{1}\right)+f\left(x_{2}\right), f\left(x_{1}\right)+f\left(x_{3}\right)$, and $f\left(x_{2}\right)+f\left(x_{3}\right)$ which always XOR to zero. The distinguisher that computes the XOR of these three bits always accepts
outputs of G but only accepts random strings with probability half, showing that G is not even $(O(1), 1 / 2)$ pseudorandom.
(c) (Optional) $G:\{0,1\}^{3 n} \rightarrow\{0,1\}^{3 n+3}$ given by $G(x, y, z)=(x, y, z, f(x+y), f(x+z), f(y+z))$.

Solution: I don't know the answer to this one.

Question 3

In Lecture 3 we showed that the following property of functions $f:\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$ separates EQU ALITY (when $m=n$) from width 2^{n} read-once branching programs:
$\operatorname{diffext}(f)$: For every pair $x \neq x^{\prime} \in\{0,1\}^{n}$ there exists a $y \in\{0,1\}^{m}$ such that $f(x, y) \neq f\left(x^{\prime}, y\right)$.
(a) Argue that diffext is $2^{O(n+m)}$-constructive, namely describe an efficient algorithm that decides diffext (f) using oracle access to f and analyze its running time.

Solution: The algorithm loops over all $\binom{2^{n}}{2}$ pairs $x \neq x^{\prime}$. For each of these pairs it tests whether any $y \in\{0,1\}^{m}$ violates the condition $f(x, y) \neq f\left(x^{\prime}, y\right)$. This condition can be checked in time $O(n+m)$, so the whole algorithm can be implemented in time $O\left((n+m) 2^{2 n+m}\right)$. This is at most quadratic in the instance size 2^{n+m}.
(b) Show that the probability that $\operatorname{diffext}(R)$ holds for a random function R is at least $1-2^{2 n-2^{m}-1}$. (Hint: Calculate the probability $R(x, y)=R\left(x^{\prime}, y\right)$ for fixed $x \neq x^{\prime}$ and all y and take a union bound.)

Solution: For fixed $x \neq x^{\prime}$ the $2^{2 m}$ values $R(x, y)$ and $R\left(x^{\prime}, y\right)$ as y ranges over $\{0,1\}^{m}$ are uniform and independent, so the 2^{m} events $R(x, y)=R\left(x^{\prime}, y\right)$ are independent of probability $1 / 2$ each. Therefore the probability that $R(x, y)=R\left(x^{\prime}, y\right)$ for all y is exactly $2^{2^{m}}$. By a union bound the probability that there exist $x \neq x^{\prime}$ for which this is the case is at most $\binom{2^{n}}{2} 2^{2^{m}} \leq 2^{2 n-1} \cdot 2^{2^{m}}$.
(c) Use part (b) to show that $\operatorname{diffext}(f)$ is $1 / 2$-large (and therefore natural) when $m \geq \log (2 n)$.

Solution: When $m \geq \log (2 n)$ the probability in part (b) is at least $1-1 / 2=1 / 2$ so diffext is $1 / 2$-large as desired.

