
CSI 5138: Computational Complexity Lecture 2
University of Ottawa, Fall 2023

In Lecture 1 we saw examples of functions that are hard to compute by small decision trees. Today
we will study the complexity of two more general models of computations: Formulas in disjunctive normal
form (DNFs) and small depth circuits.

A powerful tool for proving size lower bounds for decision trees is the method of random restrictions.
We showed that a small decision tree becomes shallow with high probability after a random restriction,
while functions like PARITY and MAJORITY don’t. This property of random restrictions generalizes to
DNFs. It is called the Switching Lemma.

1 The switching lemma

In the last lecture we defined a δ-random restriction of the variables x1, . . . , xn (taking {0, 1} values) to
be an random assignment where each coordinate is set independently to ⋆ with probability δ and to 0 and
1 with probability (1 − δ)/2 each. Under this definition, the number of stars in a random restriction is a
random variable, although one that is heavily concentrated around its mean value of δn (as long as δn is
not too small). For today’s lecture it will be convenient to modify this definition so that the number of
stars in the restriction always equals exactly u = δn. This will simplify the proof of our switching lemma
and make little difference in its applications.

Let n be the number of variables and u be a number between 0 and n. A u-restriction is an assignment
ρ ∈ {0, 1, ⋆}n in which exactly u of the n coordinates are stars. A u-random restriction is a random
assignment chosen uniformly from the set of all u-restrictions. It can be sampled like this: First, set
exactly u out of the n coordinates to ⋆ uniformly at random. Then set each of the remaining n − u
coordinates independently to 0 or 1 with equal probabilities. (Typically, the number of zeros and ones
won’t be the same.)

Recall that a DNF of size of s is an OR of s terms each of which is an AND of literals. The width of
a term is the number of literals in it. The width of a DNF is the maximum width of its terms. Width
measures the amount of processing that the AND gates have to perform “in parallel.” For example, the
width of the following DNF ϕ is 3. (A bar denotes negation and concatenation denotes AND.)

ϕ = x1x3 or x1x3x5 or x2x3 or x3x6 or x4x6. (1)

The switching lemma says that a narrow DNF typically restricts to a shallow decision tree.

Theorem 1 (H̊astad’s switching lemma). Assume u ≤ n/2. For every f : {0, 1}n → {0, 1} computable by
a DNF of width w and a u-random restriction ρ, f |ρ has decision depth less than d except with probability
at most (8wu/n)d.

To get a quantitative feel we need to choose values for u and d for which the exceptional probability
is small. If we set u to n/16w then Theorem 1 says that the probability f |ρ “survives” in the form of a
shallow decision tree shrinks exponentially in d: f restricts to depth-zero, i.e. a constant with probability
at least 1/2, depth-one with probability at least 3/4, and so on.

Let’s illustrate Theorem 1 on the DISTINCT function from {0, 1}2n → {0, 1}, represented by the
width-2 DNF

DISTINCT (x, y) = x1y1 or x1y1 or · · · or xnyn or xnyn.

Recall that DISTINCT requires decision tree size 2n and decision tree depth 2n. What happens when
DISTINCT is hit by a u-random restriction ρ? As only u coordinates of x and y remain unrestricted
overall, there must exist at least n − 2u coordinates i for which both xi and yi are restricted. If any of
these happen to restrict to different values, e.g. xi = 0 and yi = 1 then DISTINCT |ρ will collapse to
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the constant 1. Moreover these events are independent for every such i, so DISTINCT |ρ becomes the
constant 1 except with probability 2−(n−2u), which is exponentially small if say u = n/10.

This is qualitatively consistent with the prediction of Theorem 1 that DISTINCT |ρ is unlikely to have
a small decision tree. Quantitatively, random restrictions do much better on this example: DISTINCT |ρ is
already depth-zero but with probability 2−Ω(n), while Theorem 1 merely gives a small constant probability.
In general, however, the exceptional probability in Theorem 1 is close to best possible. A relevant example
is the function x1 xor · · · xor xw, that is PARITY of the first w inputs. This function always restricts
to a parity of some S inputs or its negation, where S is the number of stars that hit the set {1, . . . , w}.
The exceptional probability for this example is therefore the probability that S ≥ d, that is the probability
that {1, . . . , w} contains d or more stars.

Now think of what happens when u is a small constant. When u = 1 the probability that the unique
star hits the set {1, . . . , w} is precisely w/n. When u = 2, S ≥ 1 with probability at least 2w/n− w2/n2,
and S ≥ 2 with probability at least w(w − 1)/n(n − 1) ≈ (w/n)2. These examples indicate that an
exponential dependence in d is the best we can hope for, at least when u is constant.

The switching lemma makes no reference to the size of the DNF, even though this is the complexity
measure that we are interested in. The reason that Theorem 1 is also relevant for size is that any small
DNF is very likely to become narrow after a random restriction:

Claim 2. Assume w ≤ n/4. For every f : {0, 1}n → {0, 1} that has DNF size s and a n/2-random
restriction ρ, f |ρ has DNF width less than w except with probability at most s · (7/8)w.

Before we prove this claim, let’s introduce some notation that will be useful later. Given a DNF ϕ and
a restriction ρ, the restricted DNF ϕ|ρ is the DNF obtained by substituting the partial assignment ρ into ϕ
and performing the following simplifications: (1) If any term evaluates to 1, set ϕ|ρ to 1; (2) if not, discard
from ϕ|ρ all the terms that evaluate to 0. For example, for the above DNF ϕ and ρ = 11⋆0⋆⋆,

ϕ|ρ = x3x5 or x3 or x3x6. (2)

This definition of “restriction of a DNF” gives a recipe for simplifying the DNF after it is hit by a restriction.
In contrast, the definition of “restriction of a function” from last lecture did not say how the restricted
function f |ρ is computed but only how its values are related to those of f . The two definitions are consistent:
If DNF ϕ computes the function f , then the restricted DNF ϕ|ρ computes the restricted function f |ρ.

Proof of Claim 2. Let ϕ be a size s DNF for f . We show that the probability that ϕ|ρ has a term of width
w or more is at most s · (7/8)w. Each surviving term in ϕ|ρ can only be narrower than the corresponding
term in ϕ, so it is enough to show that the probability that some term of width w or more survives ρ is at
most s · (7/8)w.

The probability that any given such term survives ρ is at most (7/8)w: Each literal is killed with
probability 1/4. If the assignments were independent, the probability of survival would have been exactly
(3/4)w. Under our model for ρ, the probability that the (j + 1)-st variable is killed given that all previous
variables have survived is at least (n/2−j)/n ·1/2, the product of the probability that it gets a non-starred
value and the (conditional) probability that it gets the “killer” value. Under our assumptions this is at
least 1/8, so the probability that at least one variable doesn’t survive is at least (7/8)w. To finish the
proof, we take a union bound over all terms of width at most w.

From Theorem 1 and Claim 2, it follows easily that PARITY requires DNFs of exponential size. To
see this assume that there is a size s DNF for PARITY on n variables. By Claim 2, there exists a n/2-
restriction ρ and a DNF of width w = 6 log s for PARITY |ρ. By Theorem 1 with u = n/50 log s, there is a
O(n/ log s)-restriction ρ′ so that the function obtained by applying restriction ρ′ to PARITY |ρ is constant
(i.e. it has decision tree depth zero). But if s < 2n/50, the composition ρρ′ of the two restrictions still has
an unrestricted variable, so PARITY |ρρ′ cannot be a constant function.
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2 Proof of the switching lemma

To prove the switching lemma, we will upper bound the number of “bad” restrictions ρ for which f |ρ does
not have a decision tree of depth less than d. The counting is done in an indirect way: We will show
that each such u-restriction ρ can be uniquely described by a (u − d)-restriction κ plus a small amount
of “auxiliary information”. Ignoring the auxiliary information for a moment, let us see how this type of
argument goes towards proving Theorem 1. The number of u-restrictions is

(
n
u

)
2n−u, and if every bad

u-restriction uniquely maps to some (u− d)-restriction, the probability that a random u-restriction is bad
would be at most(

n

u− d

)
2n−(u−d)

/(
n

u

)
2n−u which is at most

( u

n− u

)d
2d ≤ (4u/n)d.

which is better than what we promised.
Let’s think of the map as a game between an Alice who wants to communicate a restriction ρ to Bob

by a message shorter than ρ itself. We assume that both Alice and Bob know the formula ϕ.

The case of width 1 Let’s start with a DNF of width 1, namely an OR of literals like

ϕ = x1 or x2 or x3 or x4 or x5 or x6 or x7 or x8.

Under which bad restrictions does ϕ fail to restrict to a DNF of depth zero, i.e. a constant? For this to
happen all the non-starred positive literals must be assigned a 1 and all the negative ones must be assigned
a zero. For example, ρ = 01⋆001⋆0 is an example of a bad 2-restriction.

One encoding by which Alice can communicate a bad restriction to Bob is by informing him of the set
of star-positions. In this example, Alice would send the set {3, 7}. Upon receiving the positions of the
stars Bob can uniquely reconstruct the remaining entries by replacing them with the value for which the
corresponding literal evaluates to zero (0 for the positive literals and a 1 for the negative literals). As there
are

(
n
u

)
possible sets of stars there can be (at most) this many bad restrictions. Therefore the fraction of

bad u-restrictions is at most
(
n
u

)
/2n−u

(
n
u

)
= 1/2n−u.

There is another encoding that does much worse in the width-1 case but will generalize to larger width:
Alice converts all the stars to {0, 1}-values that would simplify ϕ to the constant 1 and sends the resulting
n-bit string to Bob. In this example Alice would send the string 01100100. To recover the restriction Bob
finds all the literals that evaluate to 1 and replaces them with stars. This encoding has length 2n so its
existence gives an upper bound of 2n/2n−u

(
n
u

)
= 2u/

(
n
u

)
on the number of bad restrictions.

Here is an alternative way to describe the same encoding. For each variable that appears in the
restricted formula ϕ|ρ, Alice chooses a value for that variable that sets ϕ|ρ to true and substitutes the
corresponding ⋆ in ρ with this value. In our example ϕ|ρ is the formula x3 or x7, so Alice replaces the first
star with a 1 and the second star with a 0, respectively. Alice can also make “partial progress” by sending
Bob the restriction κ = 011001⋆0 that replaces the first star but not the second one. To reconstruct ρ from
κ, all that Bob has to do is find the first variable that is set to true in κ and revert it to a star.

A real example To be concrete, let’s take again ϕ to be the DNF (1) and ρ = 11⋆0⋆⋆. Then ϕ|ρ is the
DNF (2). Alice takes the first term of ϕ|ρ, in this case the term x3x5. She then finds the unique partial
assignment α that makes x3x5 true, namely x3 = 0 and x5 = 1. The restriction κ is obtained by extending
ρ with the assignment α: Alice sends κ = 11001⋆ to Bob.

Can Bob now recover ρ from κ? The issue is that Bob does not know which of the 0s and 1s in κ came
from the assignment α and which were originally present in ρ. But Bob can try to reverse-engineer Alice’s
steps. Applying the restriction κ to the ϕ, Bob sees that the first term x1x3 vanishes under κ, so it is
not the term set by Alice. However, the next term x1x3x5 evaluates to 1 under κ, so Bob knows that the
partial assignment α only involves a subset of the variables x1, x3, x5. But which ones of the three were
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set by ρ and which were set by α? To allow Bob to determine this, Alice sends as additional information
the identities of the variables among x1, x3, and x5 that were starred in ρ and set in α.

To summarize, Alice encodes the restriction ρ = 11⋆0⋆⋆ by the pair (κ, aux), where κ is the restriction
11001⋆ and aux describes variables x3 and x5 within the term x1x3x5. One way to describe these two
variables is to specify their set of indices, namely aux = 35. A more succinct encoding is to give the set of
indices within the term x1x3x5, namely aux = 23, referring to the fact that x3 and x5 are the second and
third variable within this term. For the proof of the switching lemma it is essential that Alice and Bob
make use of the latter encoding. Upon receiving this information, to recover ρ, Bob looks for the first term
of ϕ that is set to 1 by κ and replaces the variables indexed by aux with stars, where the indexing refers
to the order in which the variables appear within this term.

So far we have shown how to encode (for this specific width 3 DNF ϕ) our 3-restriction ρ by a 1-
restriction κ together with 3− 1 = 2 entries of auxiliary information, each taking values between 1 and w.
Extrapolating from this example, the encoding represents a u-restriction ρ by a (u − d)-restriction κ and
a string aux with d symbols in the set {1, . . . , w}, where d is the width of the first surviving term of ϕ|ρ.
The probability that a bad DNF survives the restriction is therefore at most

number of (u− d)-restrictions

number of u-restrictions
· wd ≤

( u

n− u

)d
2dwd = (2wu/(n− u))d

which has the form that we want. However, d here refers to the width of the first term that survives ρ,
while we want it to be the depth of the best decision tree for f |ρ.

To make further progress, a natural idea is to fix more variables in ρ by applying the encoding recursively
to κ. This appears to be a non-starter, as ϕ|κ = 1. What Alice and Bob will do instead is agree to extend
ρ to another restriction ρ′ which also fixes the variables x3 and x5, but to different values than in κ, so
that the term x3x5 does not become true under ρ′. There are three such possible assignments for x3x5:
00, 10, and 11. Among these three, which one should Alice choose? Setting x3 to 1 is not a good idea as it
makes the second term of ϕ|ρ true, thereby impeding further progress. Alice picks the partial assignment
β which sets x3x5 to 00, extends ρ by β to obtain ρ′ – in this case ρ′ = 11000⋆ – communicates ρ′ to Bob
succinctly by specifying the partial assignment 00, and then iteratively encodes ρ′ by editing the relevant
parts of κ and supplying the required auxiliary information.

Encoding and decoding In general, Alice will use the following procedure to encode her restriction ρ.
We assume Alice and Bob share the formula ϕ, but the restriction ρ is only known to Alice.

Procedure Enc: On input ρ ∈ {0, 1, ⋆}n,
Set κ = ρ, ρ′ = ρ, and aux to the empty string.
Until ϕ|ρ′ is a constant repeat the following:

Let c|ρ′ be the first term of ϕ|ρ′ and c the corresponding term of ϕ.
Let α be the partial assignment that sets c|ρ′ to true.
Let β be the partial assignment to c|ρ′

that maximizes the decision tree depth of the function ϕρ′β.
Extend κ by α and ρ′ by β.
Append to the tail of aux

the list of variables set by α (and β) indexed by their position in c and
their values in β

Append the symbol · to aux.
Output the pair (κ, aux).

Before stating the properties of this procedure, let us run thru our example ϕ from (1) and ρ = 11⋆0⋆⋆.
In the first iteration, we obtain as described above

ϕ|ρ′ = x3x5 or x3 or x3x6, c = x1x3x5 c|ρ′ = x3x5 α = 01 β = 00.
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At the end of this iteration, κ, ρ′, and aux become

κ = 11001⋆ ρ′ = 11000⋆ aux = 2300·

as the second and third variable in c|ρ′ both take value 0 in ρ′. So in the next iteration, we have

ϕ|ρ′ = x6, c = x3x6 c|ρ′ = x6 α = 1 β = 0.

At the end of this iteration, κ = 110011, ρ′ = 110000 and aux = 2300·20·. Since ϕ|ρ′ is now a constant,
Enc(ρ) terminates with the encoding

Enc(ρ) = (110011, 2300·20·).

which Alice sends to Bob.
Bob recovers ρ from the pair (κ, aux) by applying Alice’s steps in reverse:

Procedure Dec: On input (κ, aux):
Let ρ = κ and ρ′ = κ.
Loop through the parts a of aux separated by dots:

Let c be the first term of ϕ satisfied by ρ′.
Replace the entries indexed by a (within c) by stars in ρ.
Replace the same entries in ρ′ by the corresponding assignment in a.

Output ρ.

Initially, ρ = 110011 and ρ′ = 110011. Bob begins by finding the first term of c that is set to 1 by ρ′,
in this case c = x1x3x5, and then modifies ρ and ρ′ by resetting the values of x3 and x5 as described in the
first part of aux to obtain

ρ = 11⋆0⋆1 ρ′ = 110001.

In the next iteration, c = x3x6. The sceond part of aux says that the second variable x6 in this term was
set to 0 in ρ′, so we recover

ρ = 11⋆0⋆⋆ and ρ′ = 110000.

Properties of the encoding In general, one can prove the following claim:

Claim 3. For every partial assignment ρ, Dec(Enc(ρ)) = ρ, and so Enc is an injective map.

We now argue that if ϕ|ρ has a large decision tree, then κ contains a lot fewer stars than ρ:

Claim 4. If ϕ|ρ requires decision tree depth d > 0, then κ has at least d fewer stars than ρ.

Proof. We prove the claim now by strong induction on d. When d = 0 there is nothing to prove. Now
assume it is true for all values smaller than d. The assignment β is chosen so as to maximize the decision
tree depth of the function ϕ|ρβ. Since d > 0, ϕ|ρ is not constant. If its first term c|ρ contains v variables
then we will show that decision tree depth of ϕ|ρβ must be at least d− v. By inductive hypothesis, κ had
at least d− v fewer stars than ρβ, so it has at least d fewer stars than ρ.

Suppose, for contradiction, that for every partial assignment β to these variables, ϕ|ρβ had a decision
tree of depth less than d−v. We can then construct a decision tree for ϕ|ρ of depth less than d: First query
the v variables in c|ρ. For the unique assignment that sets c to true output 1. For every other assignment
β, run the decision tree for ϕ|ρβ. This is a decision tree for ϕ|ρ of combined depth less than d.

By a small modification of the encoding procedure, we can in fact ensure that κ has precisely d fewer
stars than ρ (assuming ϕ|ρ requires decision tree depth d): Once exactly d starred variables in ρ are
assigned values in κ, the encoding procedure halts. This does not affect the correctness of the decoding,
so the encoding map remains injective.
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To summarize, we have shown that every u-restriction ρ such that ϕ|ρ requires decision tree depth d
can be uniquely described by a (u− d)-restriction κ together with some auxiliary information aux. If A is
the set of all possible values for aux, it follows that

Prρ[ϕ|ρ requires decision tree depth d] ≤ number of (u− d)-restrictions κ

number of u-restrictions ρ
· |A|

=

(
n

u−d

)
2n−(u−d)(

n
u

)
2n−u

· |A|

≤ (2u/n)d|A|

so all that remains to do is to bound the size of A. To specify aux, we need to give d symbols taking
values in the set {1, . . . , w} (describing variables within a term), an additional d symbols taking 0, 1 values
(assignments to these variables), some of which are followed by a dot. If we extend the assignment alphabet
from {0, 1} to {0, 1, 0·, 1·} to account for the dots, we conclude that aux can take at most wd · 4d possible
values, so |A| ≤ (4w)d. The desired probability is then at most (8wu/n)d, which is what we needed to
prove.

3 Small depth circuits

An AND/OR circuit of unbounded fan-in is a directed acyclic graph1 in which the nodes are assigned the
following labels: Each source node is labeled by exactly one of the literals x1, . . . , xn, x1, . . . , xn, while the
other nodes are labeled by and or or . In addition, each of the m sinks gets a unique label among
y1, . . . , ym. (If there is only one sink we might not bother assigning it a label.)

A circuit computes a function from {0, 1}n to {0, 1}m in a natural way: The inputs (x1, . . . , xn) and
their negations (x1, . . . , xn) are plugged in at the source, and then the values of the internal nodes are
computed until the outputs (y1, . . . , ym) are found.

The size of the circuit is the number of nodes, excluding the source nodes. Its depth is the length of the
longest path from source to sink. Size represents the length of the program, or number of gates in a piece
of hardware modeled by the circuit. Depth is the time it takes to evaluate the circuit in parallel (assuming
the gates at distance t from the input are evaluated at time step t).

ANDs and ORs of literals are circuits of depth 1, while a DNF is a circuit of depth 2. Two interesting
examples of depth 3 are INJectivity and SURJectivity. The input in {0, 1}n logm is viewed as a list of
n numbers x1, . . . , xn from the set {0, . . . ,m − 1}, each given by its (logm)-bit representation (assuming
m is a power of 2). INJ asks whether the m numbers are distinct (provided m ≥ n), while SURJ asks
whether all m numbers appear in the list (provided n ≥ m). They can both be represented in depth-3 as

INJ(x1, . . . , xn) = ANDi ̸=jDISTINCT (xi, xj)

SURJ(x1, . . . , xn) = ANDm
t=1ORn

i=1EQUALt(xi)

Here, EQUALt(x) is the log n-width term that evaluates to 1 when all bits of x match those of t.
A natural question to ask is how the depth of circuits affects their computational power. When the

depth is small, the switching lemma is a powerful tool for analyzing such circuits.

Theorem 5. If f : {0, 1}n → {0, 1} is computable by a circuit of size s and depth d and ρ is a n/(K log s)d−1-
random restriction then f |ρ has decision tree depth less than t except with probability at most d/s + 2−t,
where K is some constant.

The error probability can be made to vanish faster by choosing different constants, but let’s stick to this
statement for concreteness. To prove the theorem we will apply the switching lemma iteratively, arguing

1It is curious that circuits should be acyclic, but this is the standard terminology in computational complexity, probably
tracing its roots back to the origins of computing devices in electrical engineering.
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that at each step the bottom layer of gates vanishes with high probability over the choice of random
restriction.

For the proof of the theorem it is helpful to assume that the circuit is layered: All level-1 gates (that
touch the literals) are AND-gates, all level-2 gates are OR-gates whose inputs come from level 1, all level-3
gates are AND-gates whose inputs come from level 2, and so on. The assumption can be made essentially
without loss of generality.

Proof. By the same proof as in Claim 2, if ρ0 is an n0 = n/2 random restriction the probability that any
of the gates at level 1 has fan-in more than 20 log s is at most 1/s. Assuming this is not the case, namely
all level 1 gates have fan-in at most 20 log s after applying ρ0, all nodes at level 2 become DNFs of width
at most w = 20 log s.

By Theorem 1, if we set n1 = n0/200 log s, the probability that any of the DNFs does not simplify to
a decision tree of depth at most w under a n1-random restriction ρ1 is at most s · (8wn1/n0)

20 log s ≤ 1/s.
Assuming all level 2 functions do simplify, the level 3 gates of the circuit are now ANDs of decision trees
of depth at most w. By Theorem 6 from Lecture 1, each such decision tree can be expanded as a CNF of
width w. The top gate of these CNFs can then be merged with a level 3 gate of the same type, thereby
reducing the depth of the circuit by 1.

Let ρ be the restriction obtained by applying ρ0, ρ1, . . . , ρd−1 in this order. If ni is the input size of
f |ρ0...ρi for i ≥ 1 then ρi+1 is an ni+1-random restriction with ni+1 = ni/200 log s. At each step except for
the last one, the probability that the depth of the circuit does not decrease is at most 1/s. In the last step,
we apply Theorem 1 with depth parameter t. By a union bound, with probability at least 1 − d/s − 2−t

the depth reduces at each step. In this case f |ρ is a decision tree of depth w.
The number of unrestricted variables in ρ is n0/(200 log s)

d−1 = 1
2n/(200 log s)

d−1 as desired.

Applying Theorem 5 to the PARITY function, we conclude the following:

Theorem 6. If a circuit that computes PARITY on n bits has depth d, its size must be 2Ω(n1/(d−1)).

Proof. If n > (K log s)d−1 in the notation of Theorem 5, then PARITY |ρ is not a constant function, but
f |ρ has a decision tree of depth 0 (and is therefore constant) with some probability for any f that admits
a circuit of size s and depth d. Therefore PARITY cannot be computed by such circuits. Choosing the
smallest value of n gives s = 2Ω(n1/(d−1)).

This bound for the PARITY function is tight as circuits of depth d and size 2O(n1/(d−1)) for PARITY
on n bits do exist. A slightly weaker lower bound can be proved for the MAJORITY function as well.

4 Circuits with parity gates

A model of computation that cannot compute parities is not particularly realistic. What if, in addition
to ANDs and ORs, we allow the circuit to have PARITY gates as well? Then the circuit won’t simplify
by a random restriction anymore so we need a different property to tell apart such circuits from complex
functions. The relevant property turns out to be approximability by low-degree polynomials. To explain
this we need a bit of algebra.

Let’s use + and · to represent XOR and AND of bits, respectively. (In mathematical jargon this is
the field F2 of two elements.) Then every function from {0, 1}n to {0, 1} can be uniquely expanded as
a multilinear polynomial of degree at most n. For example, PARITY of 3 bits is x1 + x2 + x3, while
MAJORITY of 3 bits is x1x2 + x2x3 + x3x1.

Each function has a unique polynomial representation of this type. One way to calculate is to start with
“point functions” that evaluate to 1 at exactly one input, for example f(x) = 1 only when x = 110. This
function is represented by the polynomial x1x2(1 + x3). Since every function is a sum of point functions,
we can get a polynomial for it by summing up over its points. One way to see that the polynomial is
unique is that there are as many functions as there are polynomials: To specify a polynomial I have to
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tell whether to include or not the any of the 2n monomials 1, x1, x2, x1x2, etc. So there are 22
n
multilinear

polynomials, just as many as there are functions.
One measure of simplicity of polynomials is their degree. In this sense PARITY is a simple function

because it has degree 1 regardless of the number of variables. On the other hand, OR is not so simple
because OR of n bits is represented by 1+(1+x1) · · · (1+xn) which has degree n. However this complication
occurs only “at one point”: If we were only interested in approximating the value of OR on most inputs,
then the constant 1 would be a perfectly good candidate.

Unfortunately this notion of approximation does not compose well: If polynomials p, q1, . . . , qn approx-
imate the functions f, g1, . . . , gn, it might not be the case that the composed function p(q1(x), . . . , qn(x))
approximates f(g1(x), . . . , gn(x)) well. But there is a different probabilistic notion of approximation that
does compose well.

A probabilistic polynomial P is a probability distribution over ordinary polynomials. On any given input
x, the value of P (x) is a {0, 1} random variable. We’ll say P approximates f with error ε if P (x) = f(x) with
probability 1− ε for every x (for a random P ). The (deterministic) polynomial 1 no longer approximates
the OR function betause P (0) ̸= 1(0) with probability 1. Nevertheless, there is a probabilistic polynomial
of fairly low degree that does!

Claim 7. OR of n bits can be approximated by a probabilistic polynomial of degree log 1/ε with error ε.

Proof. Suppose I take a random parity of the input x by including each bit in it independently with
probability half. If x = 0 then the parity will always be 0. If x = 1 it will evaluate to 1 with probability at
least 1/2 regardless of the input. The reason is that if I make all the random choices before the i-th one
for any position such that xi = 1, the i-th random choice is equally likely to result in zero and one values.

The polynomial of interest is P (x) = 1 + (1 + P1(x)) · · · (1 + Pd(x)), where P1, . . . , Pd are independent
random parities and d = log 1/ε. If x is zero so is P (x). If x is nonzero the probability that at least one
of P1(x), . . . , Pd(x) evaluates to 1 is 1− 2−d = 1− ε, in which case P also does.

Since AND(x1, . . . , xn) = 1+OR(1+x1, . . . , 1+xn), it too has a probabilistic polynomial of the same
degree. As promised approximations can be composed.

Claim 8. If P,Q1, . . . , Qn approximate f, g1, . . . , gn respectively with errors ε, ε1, . . . , εn then P (Q1, . . . , Qn)
approximates f(g1, . . . , gn) with error ε+ε1+· · ·+εn (assuming P is sampled independently from Q1, . . . , Qn).

Proof. For any given input x, an error occurs if g1(x) ̸= Q1(x) or g2(x) ̸= Q2(x) and so on, or if
f(g1(x), . . . , gn(x)) ̸= P (g1(x), . . . , gn(x)). Each of these events occurs with probability at most ε, so
by a union bound none occur except with probability (n+ 1)ε.

Each time we compose a polynomial of degree d with polynomials of degree d′ the new degree becomes
d · d′. If we have an AND/OR/PARITY circuit of size s and depth d and replace each of the AND/OR
gates by an independent polynomial with error ε, the resulting polynomial will have degree (log 1/ε)d and
approximate the circuit with error at most sε. If we set for example ε = 1/16s we obtain the following
consequence:

Theorem 9. Any AND/OR/PARITY circuit of size s and depth d can be approximated by a polynomial
of degree (log 16s)d with error at most 1/16.

Since on any given input, a random polynomial in the family is accurate 15/16 of the time, the best
polynomial must be accurate on a 15/16 fraction of inputs, so there must be an ordinary degree-(log 16s)d

polynomial p such that p and the circuit agree on 15/16 of the inputs.
This suggests that if we look for a hard function for such circuits, we should look for functions that

are not only hard to compute but also hard to approximate by low-degree polynomials. MAJORITY is
precisely such a candidate:
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Theorem 10. Every polynomial of degree at most 0.01
√
n disagrees with MAJORITY on n bits on more

than 15/16 of the inputs.

In conclusion, if a size-s depth-d AND/OR/PARITY circuit were to compute MAJORITY on n inputs
it has to satisfy (log 16s)d ≥ 0.01

√
n, or s ≥ 1

16(0.1n)
1/2d. So MAJORITY requires either deep or large

circuits.
To prove Theorem 10 we need another fact about polynomials:

Claim 11. If n is odd then every function f : {0, 1}n → {0, 1} has a (unique) representation as f(x) =
q(x) ·MAJORITY (x) + r(x), where q and r are polynomials of degree at most (n− 1)/2.

The underlying property of f is called high rational degree. It is explored in the homework.

Proof of Theorem 10. Suppose MAJORITY can be approximated by some polynomial p of degree 0.01
√
n

with error at most 1/16. Then MAJORITY (x) = p(x) + e(x), where Pr[e(x) = 1] ≤ ε. Plugging into
Claim 11 we get that every f can be written as

f(x) = q(x)(p(x) + e(x)) + r(x) = (q(x)p(x) + r(x)) + q(x)e(x). (3)

The first part is a polynomial of degree (n − 1)/2 + 0.01
√
n. To specify such a polynomial it is enough

to list all of its coefficients. There are as many such coefficients as there are monomials of at most that
degree. Each such monomial can be described by an n-bit string with at most d ones which indicate the
presence of the corresponding variables. Thus the number of coefficients equals the number of {0, 1} strings
with at most (n − 1)/2 + 0.01

√
n ones, which is less than 0.6 · 2n.2 So the number of polynomials of this

degree is at most 20.6·2
n
. As Pr[q(x)e(x) = 1] ≤ Pr[e(x) = 1], q(x)e(x) takes value 1 on at most 1

16 · 2n of

its 2n possible inputs. The number of such functions is
∑

i≤2n/16

(
2n

i

)
≤ 2H(1/16)·2n ≤ 20.34·2

n
.3 In total,

the right-hand side of (3) can be specified in at most 20.6·2
n · 20.34·2n < 22

n
ways. This is not enough to

represent all 22
n
functions.

Proof of Claim 11. We will prove that for every f there exists a degree-(n− 1)/2 polynomial q such that

f(x)MINORITY (x) = q(x)MINORITY (x), (4)

where MINORITY (x) = 1 + MAJORITY (x) = MAJORITY (1 + x) (1 + x = (1 + x1, . . . , 1 + xn)).
Applying (4) also to the function f(1+x), we get that f(1+x)MINORITY (x) = r(x)MINORITY (x) for
some degree-(n−1)/2 polynomial r. Changing variables, f(x)MAJORITY (x) = r(1+x)MAJORITY (x),
so together with (4) we get

f(x) = f(x)MINORITY (x) + f(x)MAJORITY (x)

= q(x)MINORITY (x) + r(1 + x)MAJORITY (x)

= q(x)(1 +MAJORITY (x)) + r(1 + x)MAJORITY (x)

= (q(x) + r(1 + x))MAJORITY (x) + q(x)

which has the desired form. The polynomial q satisfying (4) is obtained by discarding all monomials∏
i∈S xi of degree |S| more than (n− 1)/2 from (the unique polynomial representing) f and retaining the

rest. Since (
∏

i∈S xi)MINORITY (x) = 0 for all such monomials, discarding them doesn’t change the
value of f(x)MINORITY (x). (The representation must be unique by counting.)
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