
CSI 5138: Computational Complexity Lecture 4
University of Ottawa, Fall 2023

A sublinear-time algorithm is an algorithm that produces an answer before looking at its whole input.
One example is polling: To find out who will win an election it is not necessary to ask every single voter.
A random sample typically reveals the winner (unless the election is very close).

Polling, like many other sublinear-time algorithms, is a randomized procedure. Randomness can make a
big difference in the power of such algorithms. Quantum computation is a more general type of computation
where the improvement is sometimes even more dramatic.

1 Randomness and queries

The (deterministic) query complexityD(f) of a Boolean function f : {0, 1}n → {0, 1} is the smallest possible
depth of a decision tree computing f . It is the smallest number of bits that must be probed to determine
its value. For example, the AND function on n inputs has query complexity n, and so does the PARITY
function. Many examples you can think of have query complexity n. Are there any exceptions?

One silly kind of exception is a function whose value only depends on some strict subset of the n bits.
Such functions are called juntas. A more interesting example is the addressing function: This is a function
Addr : {0, 1}n × [n] → {0, 1} that takes as inputs a string x = x1 · · ·xn and an index i and returns its i-th
bit xi. This function takes an n+ log n-bit long input and its query complexity is log n+ 1.

The recursive majority function RMAJ(x, y, z) = MAJ(RMAJ(x), RMAJ(y), RMAJ(z)) (with base
case RMAJ0(x) = x). that you saw on Homework 1 is another example of a function whose query
complexity is as large as its input size n. (You can prove this directly or deduce it from Claim 4 below.)
In this case choosing the queries in a randomized order can provide considerable savings. To evaluate
RMAJ(x, y, z), first recursively evaluate two of the three functions RMAJ(x), RMAJ(y), RMAJ(z)
chosen at random. If their evaluations match, output the common value. If they don’t, evaluate the third
one and output the majority of the three values.

While this procedure can make as many as n queries in case it made poor random choices, this is
unlikely to happen. At least two out of the three of the functions RMAJ(x), RMAJ(y), RMAJ(z) must
have matching values. The probability that these two are chosen to be evaluated first is (at least) 1/3. By
the total expectation theorem, the expected number of queries Q(n) made by this algorithm satisfies the
recurrence

Q(n) ≤ 1
3 · 2Q(n/3) + 2

3 · 3Q(n/3) = 8
3Q(n/3)

with base case Q(1) = 1, which solves to Q(n) ≤ (8/3)log3 n ≤ n0.893. Thus the value of recursive majority
on n input bits can be determined after querying n0.893 bits of the input on average. This holds true for
every possible input in {0, 1}n; the expectation is taken over the random choices made by the algorithm.

To summarize, we have an example of a function on n bits which requires deterministic query complexity
n, but admits algorithms of expected randomized query complexity n0.893. How large can the gap between
these two quantities be?

2 Randomized decision trees

When we described the algorithm for recursive majority it was natural to have the algorithm toss a 3-sided
die every time it has to choose the evaluation order of its subtrees. To analyze the power of randomness it is
more useful to think of the algorithm as tossing all dice at the beginning and then running a deterministic
procedure that depends on their outcomes. Every randomized algorithm can be implemented in this way
without affecting its query complexity.
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From this perspective, a randomized decision tree is a probability distribution over deterministic decision
trees. For a given input x, the query complexity of a randomized decision tree on input x is then a random
variable: Some decision trees might get lucky and output an answer after querying few bits of x, while
others may need to look at most or all of them.

There are two reasonable definitions of correctness for a randomized algorithm. A Las Vegas algorithm
is one that is always correct (with probability 1), but whose complexity is a random variable. The recursive
majority algorithm is of the Las Vegas type. A Monte Carlo algorithm is one that is merely correct with
high probability. Polling algorithms are examples of the Monte Carlo type: Assuming that there is some
gap between the popularity of the candidates, polling sufficiently many people can predict the outcome of
an election to within any given sampling error, but never with 100% confidence.

Definition 1. A randomized decision tree T computes f with error ε if Pr[T (x) ̸= f(x)] ≤ ε for every
input x. The average randomized query complexity of T is the largest expected number of queries that
T makes over all inputs. The randomized query complexity Rε(f) of a function f is the smallest possible
average randomized query complexity among all randomized decision trees that compute f with error ε.

Thus R0(f) is the measure of the best Las Vegas algorithm for f . As for Monte Carlo algortihms, if
we don’t care about constant factors in query complexity we can fix ε to a specific constant like 1/3 and
moreover assume that the decision trees have bounded depth not only on average but with probability 1.

Claim 2. Rδ(f) = O((1/ε2) log(1/δ)R1/2−ε(f)).

Proof. Repeat the (1/2−ε)-error algorithm O(1/ε2 log(1/δ)) times and output the majority of the answers.
By Hoeffding’s inequality (an instance of the Chernoff bound) for any given input the probability the
majority value is incorrect is at most δ.

Claim 3. There is a randomized decision tree of that computes f with error δ + γ and whose query
complexity is at most (1/γ)Rδ(f) with probability 1.

Proof. Clip the decision tree paths of length more than (1/γ)Rδ(f) and output an arbitrary answer if the
decision tree follows such a path. By Markov’s inequality the probability that for any fixed input, the path
is 1/γ times longer than its expected length is at most γ. So the clipping incurs at most γ additional error
probability.

Let R(f) be the smallest possible maximum query complexity among all randomized decision trees that
compute f with error 2/3. Claim 2 and 3 tell us that R(f) = Θ(R1/2−ε(f)) for every constant ε > 0. We
will adopt R(f) as a measure of Monte Carlo query complexity.

3 Degree and sensitivity

We already saw several ways to lower bound decision tree depth. Let’s see a couple more.
In Lecture 2 we talked about representing Boolean functions as polynomials over the field F2 with +

and × are the XOR and AND operations, respectively. Such functions can also be uniquely represented as
multilinear polynomials over the real numbers. For example, AND of n bits is the polynomial x1x2 · · ·xn,
while XOR is 1

2 −
1
2(1− 2x1) · · · (1− 2xn). We will argue shortly that this representation is unique. (It is

no longer possible to do so by counting because there are infinitely many real numbers.)
The degree of f is the degree of the unique multilinear polynomial that represents it. The deterministic

query complexity of a function must be at least as large as its degree:

Claim 4. D(f) ≥ deg(f).

Proof. A decision tree can be written as a sum of functions fp of at most D(f) variables each, where each
function fp is an indicator for a particular path p leading to a 1-leaf being taken. Since each fp has degree
at most D(f) so does f .

2

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_bound
https://en.wikipedia.org/wiki/Markov%27s_inequality


Another more local complexity measure of a function is its sensitivity. Say bit i flips f at x if f(x) ̸=
f(xi), where xi is the string obtained from x by changing its i-th bit. The sensitivity sens(f) is the
maximum number of bits that flip f taken among all its inputs x. For example, AND has sensitivity n
because all bits flip it at x = 0n.

Claim 5. D(f) ≥ sens(f).

Proof. For every input x, the only bits that may flip f at x are those queried by the decision tree, and
there are at most D(f) of them.

There is an analogue of Claim 4 for randomized decision trees. We say f has ε-approximate degree
at most d if there is a real-valued polynomial p of degree at most d such that |f(x) − p(x)| ≤ ε. The

1/3-approximate degree is denoted by d̃eg.

Claim 6. If f has a randomized decision tree of depth d and error ε then it has ε-approximate degree at
most d. In particular, R(f) = Ω(d̃eg(f)).

Proof. By assumption there is a probability distribution over deterministic decision trees T of depth d such
that Pr[f(x) ̸= T (x)] ≤ ε. Since f and T take 0/1 values, this means |E[T (x)] − f(x)| ≤ ε. By Claim 4
each T has degree at most d, so the polynomial p(x) = E[T (x)] has degree at most d and approximates f
with error at most ε.

By Claims 2, 3, and 6, R(f) ≥ Ω(d̃eg(f)). So a potential method for arguing that a function has large
randomized query complexity is by lower bounding its approximate degree. Unfortunately approximate
degree is not always easy to calculate, and the lower bounds it gives can be far from tight. Nevertheless it
is important for two reasons. One will be given in the next lecture. For the other one, keep reading.

4 Polynomial equivalence of complexity measures

We introduced several complexity measures for Boolean functions: deterministic and randomized query
complexity, degree, sensitivity, and approximate degree. We also saw an example of a gap between ran-
domized and deterministic query complexity. It turns out that this gap can never be too large.

Say two measures M and M ′ are polynomially equivalent if there exist constants c, C > 0 such that
Ω(M(f)c) ≤ M ′(f) ≤ O(M(f)C) for all f : {0, 1}n → {0, 1} and all n.

Theorem 7. D, R0, R, deg, d̃eg, and sens are all polynomially equivalent.

Thus sensitivity, which is a very “local” measure and generally easy to bound (at least from below),
tells us what the query complexity of a function is up to polynomial equivalence.

To prove Theorem 7 we need to talk about one more measure. The block sensitivity of a function is
the largest number of blocks the set of variables can be partitioned in so that at some input x, flipping all
the variables in any given block changes the value of the function. Alternatively, you can think of block
sensitivity as the maximum (regular) sensitivity among all functions obtained by potentially identifying
different variables with one another:

bsens(f) = max(i1,...,in) sens(f(xi1 , . . . , xin)),

where the maximum is taken over all sequences of indices with possible repetitions. In particular, block
sensitivity is at least as large as sensitivity.

Claim 8. D(f) ≤ bsens(f) · deg(f)2

Claim 9 (Huang’s theorem). deg(f) ≤ sens(f)2.

Claim 10. sens(f) ≤ bsens(f) ≤ Ω
(
d̃eg(f)2

)
.
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We prove Claims 8 and 9 today and Claim 6 in the next lecture. Using them we can easily prove
Theorem 7:

deg1/4
9
≤ sens1/2

10
⪯ d̃eg

6
⪯ R ≤ R0 ≤ D

8
≤ deg2 · bsens

10
⪯ deg2 · d̃eg

2
≤ deg4.

Here a ⪯ b stands for a(f) = O(b(f)), and the number above each inequality refers to the Claim that it
follows from. All the measures of interest are polynomially equivalent to degree, so they are polynomially
equivalent to one another.

Proof of Claim 8. We prove the claim by induction on the degree of f . The base case deg(f) = 0 checks
out. Now suppose the claim is true for all functions of degree less than deg(f). We show it is true for f .

Let M be any monomial of f of maximal degree. If ρ restricts the inputs outside M to value 1 then
f |ρ still contains the monomial M (as it cannot cancel out any of the restricted monomials) so it is not
the constant function. Therefore there must exist a subset B of M so that f flips its value at input x = 1n

when the inputs in B are flipped.
Now let M be a maximal set of monomials of f of maximal degree that do not share any variables.

Since each monomial in M contains a subset that flips its value at 1n, the size of M can be at most
bsens(f). Since each monomial in M has deg(f) variables, M covers at most deg(f)bsens(f) variables.
Since M is maximal, after all these variables that appear in M are restricted to any possible set of values ρ
the degree of f |ρ must strictly decrease, while its block sensitivity cannot increase. By inductive hypothesis
D(f |ρ) ≤ deg(f |ρ)2bsens(f |ρ) ≤ (deg(f)−1)2bsens(f), soD(f) ≤ deg(f)bsens(f)+(deg(f)−1)2bsens(f) ≤
deg(f)2bsens(f), completing the induction.

5 The Fourier representation

For the proof of Claim 9 it is better to represent bits by the values 1 and −1 instead of 0 and 1. Under
this convention the function f of interest is from {−1, 1}n to {−1, 1}. This change of representation affects
neither sensitivity nor degree, as the change can be implemented by the linear map {0, 1} → {1,−1} given
by x → 1 − 2x with inverse y → 1

2 − 1
2y. PARITY of n inputs is now represented by the polynomial

x1 . . . xn, while AND is represented by

AND(x1, . . . , xn) = 1− 2 · 1− x1
2

· · · 1− xn
2

.

By expanding the polynomial we obtain a representation of the form

f(x) =
∑
S

f̂(S)
∏
i∈S

xi =
∑
S

f̂(S) · PARITYS(x). (1)

where the outer summation ranges over all 2n subsets of [n]. Thus every f is a linear combination of
PARITY functions. For example,

AND(x1, x2, x3) = 1− 2 · 1− x1
2

· 1− x2
2

· 1− xn
2

= 3
4 − 1

4x1 −
1
4x2 −

1
4x3 +

1
4x1x2 +

1
4x1x3 +

1
4x2x3 −

1
4x1x2x3,

so ÂND(∅) = 3/4, ÂND({1}) = −1/4, and so on. In general, the Fourier coefficients f̂(S) can be
calculated using the formula

f̂(S) =
1

2n

∑
x∈{−1,1}n

f(x)
∏
i∈S

xi = E
[
f(X) · PARITYS(X)

]
, (2)

where the expectation is over a uniformly random X from {−1, 1}n.
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To explain formula (2), we rewrite (1) in matrix form f = H · f̂ , where H(x, S) =
∏

i∈S xi is no other
than the 2n × 2n Walsh-Hadamard matrix from last lecture. The only difference is that the x-inputs are
now represented by {−1, 1}-long n-bit strings while the y-inputs are represented by their indicator sets. As
H2 is 2n times the identity matrix, the matrix H is its own inverse up to scaling: H−1 = 2−n ·H. Therefore
f̂ = 2−nHf , which gives formula 2. Invertibility of H also tells us that the Fourier representation must be
unique: If f had two representations f = Hf̂1 = Hf̂2, then H(f̂1 − f̂2) must be zero and so must f̂1 − f̂2.
So the two are identical.

6 Proof of Huang’s Theorem

We view f as a function from {−1, 1}n to {−1, 1}. It is enough to prove the theorem for functions of
maximum degree n: If we take a maximal degree monomial of f and restrict the values outside to 1 then
the sensitivity can only go down while the degree stays the same. In Fourier language, we may assume
that the coefficient f̂([n]) is nonzero.

Next, instead of looking at the function f : {−1, 1}n → {−1, 1} of degree n we switch to the function
g(x) = f(x) · PARITY (x). This transformation has the effect at flipping the value of f at all inputs that
contain an odd number of −1’s. Since x2i = 1 the coefficient of each monomial of g equals to the coefficient
of the complementary monomial of f :

g(x) =
∑
S

f̂(S)
∏
i ̸∈S

xi

In particular, the average value E[g(X)] of g equals the coefficient f̂([n]), so it is nonzero.
Finally, it will be convenient to think of the set {−1, 1}n as vertices of the hypercube graph Hn, the pairs

that differ in exactly one input coordinate as edges of this graph, and the function g as a coloring of the
vertices of this graph with the colors −1 and 1. Then the assumption E[g(X)] ̸= 0 means that one of the
colors covers strictly more than half the vertices. Let’s call it the dominant color. Let G be the subgraph
of the hypercube Hn induced by the vertices of the dominant color. Then the degree of any vertex in this
graph can be at most sens(f): At most sens(f) neighbors of x flip the value in f , so at most this many
vertices can have the same color in G.

These changes in perspective reduce Claim 9 to the following statement about subgraphs of the hyper-
cube:

Lemma 11. Any induced subgraph of Hn with strictly more than 2n−1 vertices has a vertex of degree at
least

√
n.

To prove Lemma 11 we need to talk about weighted graphs. A bounded weighting of a graph G is
an assignment of weights between −1 and 1 to the edges of G (and zero weights to the non-edges). The
adjacency matrix of a weighted graph is a symmetric matrix whose (i, j)-th entry is the weight of edge
(i, j). The eigenvalues of a (weighted) graph are the eigenvalues of its adjacency matrix.

Claim 12. The hypercube Hn has a bounded weighting all of whose eigenvalues are −
√
n or

√
n.

All of the weights in fact have value 1 or −1. This is what the desired weighting looks like in the first
three hypercubes. Solid and dashed lines indicate weight 1 and −1, respectively:

Each weighting is built recursively by assigning the previous one to the bottom part of the hypercube,
its negation to the top part, and weight-1 edges to the matching that connects the two.
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Proof. If the vertices are ordered lexicographically, the adjacency matrix is defined recursively by the
formula

Wn =

[
Wn−1 I
I −Wn−1

]
with base case W0 = 0. Its square W 2

n satisfies the recursion

W 2
n =

[
W 2

n−1 + I 0
0 W 2

n−1 + I

]
=

[
W 2

n−1 0
0 W 2

n−1

]
+ I.

Unwinding the recursion gives W 2
n = nI, so all the eigenvalues of W 2

n are equal to n. Since Wn has real
eigenvalues all of them must equal −

√
n or

√
n.

Claim 13. If a (weighted) graph has an eigenvalue of multiplicity m > 1, then the subgraph obtained by
removing any vertex has the same eigenvalue with multiplicity at least m− 1.

Proof. Suppose x is an eigenvector of A, and assume its i-th entry xi is zero. Then x is also an eigenvector
with the same eigenvalue of the matrix obtained by zeroing out the i-th row and column of A. If A is an
adjacency matrix, then x with the i-th entry removed is an eigenvector with the same eigenvalue of the
graph obtained by removing the i-th vertex.

If the graph has an eigenvalue of multiplicity m then the corresponding space of eigenvectors is m-
dimensional. It must contain an (m− 1)-dimensional subspace that is zero at the position of the removed
vertex. After removing the vertex and the corresponding entry in the eigenvectors this (m−1)-dimensional
space still remains a space of eigenvectors with the same eigenvalue, so the eigenvalue must have multiplicity
at least m− 1.

Claim 14. The maximum degree of a graph is at least as large as the largest eigenvalue of any of its
bounded weightings.

Proof. Let d be the maximum degree and x, λ be an eigenvector-value pair of the weighted adjacency
matrix A. Since Ax = λx, for every entry xi of x, λxi must equal some bounded linear combination of at
most d other xj ’s. If xi is the largest entry of x then the linear combination can reach its target only if
the number of summands d is at least as large as |λ|.

Proof of Lemma 11. Take the bounded weighting of Hn from the first claim. At least one of the eigenvalues
−
√
n or

√
n has multiplicity 2n−1. After removing the fewer than 2n−1 vertices outside the induced subgraph

the second claim says that at least one of these eigenvalues survives. By the third claim the maximum
degree must be at least as large as it.

Figure 1: Proof of Huang’s theorem. (a) MAJORITY ; (b) g = MAJORITY · PARITY ; (c) subgraph
induced by the dominant color of g.

Figure 1 illustrates the proof applied to MAJORITY of 3 inputs. This function has degree 3. Huang’s
theorem claims that its sensitivity is at least 2 by the following argument. First, the vertices of the cube
are colored by MAJORITY value: black and white represent −1 and 1, respectively. Then the function
g = MAJORITY · PARITY is colored. This amounts to recoloring all the odd layers. The dominant
color in g is black. The hypercube H3 has eigenvalues −

√
3 and

√
3, each with multiplicity 4. after the
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two white vertices are removed, each of the eigenvalues survives with multiplicity at least 2. Indeed, the
eigenvalues of the remaining weighted 6-cycle are

√
3, −

√
3, and 0, each with multiplicity 2. Since

√
3

survives as an eigenvalue, at least one of the vertices of the cycle must have degree at least
√
3 (in this

example all of them do). Its outgoing edges are the sensitive ones.

7 Query complexity of partial functions

A partial function is a function that is only defined over a subset of all inputs. In the case of 0/1-valued
functions over the Boolean cube (i.e. decision problems), a partial function is a function f : Π → {0, 1}
where Π is a subset of {0, 1}n called the promise. When evaluating the function we only care about being
correct on inputs in the promise.

The deterministic and randomized query complexities of partial functions can be very different and
Theorem 7 does not hold for them. For example, consider the set Π consisting only of strings that have
at most n/3 zeros or at least n/3 ones. The approximate majority partial function is majority on strings
satisfying the promise:

APXMAJ(x) =

{
1, if x has at least 2n/3 ones,

0, if x has at most n/3 ones.

Approximate majority requires n/3 deterministic queries, but its Monte Carlo randomized query complexity
is constant. If you sample say 21 random bits of x and take their majority, then it is likely to be correct on
every input that satisfies the promise (it is like sampling a coin that is promised to be heavily biased). So
the gap between deterministic and randomized query complexity can be very large for partial functions.

Nevertheless, although Theorem 7 fails, several of the claims we proved along the way hold for partial
functions as well. These include all claims from Sections 2 and 3. It also includes the important Claim 10
which we will prove next time. An illustrative example in this context is the approximate OR function:

APXOR(x) =

{
1, if x has exactly one 1,

0, if x is the all-zero string.

This partial function has sensitivity and therefore deterministic query complexity n. What about its
randomized query complexity? Intuitively, a randomized algorithm still needs to make a lot of queries to
locate the lonely 1. Since the 1 is in a random position, an algorithm that makes q queries can spot the
1 with probability at most q/n, so it cannot distinguish between the two types of inputs with constant
advantage unless q is linear in n.

A pair of distributions X0, X1 is δ-indistinguishable by algorithm A if Pr[A(X1) = 1] − Pr[A(X0) =
1] ≤ δ.

Lemma 15. Suppose there exists a pair of distributions X0, X1 supported on f−1(0) and f−1(1) that are
δ-indistinguishable by deterministic decision trees of depth at most d. Then no randomized decision tree of
depth at most d can compute f with error smaller than (1− δ)/2.

This is essentially an equivalence: If the conclusion holds then there exists X0, X1 as in the assumption
that are 2δ-indistinguishable. So Lemma 15 provides a universal method for lower bounding randomized
query complexity.

Proof. Let X take value X0 with probability 1/2 and X1 with probability 1/2. Viewing R as a distribution
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over deterministic decision trees T , we can write

minx∈Π Pr[R(x) = f(x)] ≤ EX PrT [T (X) = f(X)]

= ET PrX [T (X) = f(X)] by linearity of expectation

= ET

[
1
2 Pr[T (X1) = f(X1)] +

1
2 Pr[T (X0) = f(X0)]

]
= ET

[
1
2 Pr[T (X1) = 1] + 1

2 Pr[T (X0) = 0]
]

= ET

[
1
2 Pr[T (X1) = 1] + 1

2(1− Pr[T (X0) = 1])
]

≤ ET

[
1
2 + 1

2δ
]

=
1 + δ

2
.

For the approximate OR function, the distributions of interest X0 and X1 are uniform over the 0 and 1
inputs of f , respectively. As the 1-entry in X1 is in a random position, T (X1) will only see zeros except with
probability q/n. Therefore X0 and X1 are q/n-indistinguishable. By Lemma 15, R1/2−q/2n(APXOR) ≥ q
for every q, so in particular R(APXOR) ≥ n/6.

What is the degree of the approximate OR function? This is a trick question as there are two possible
definitions of degree that are sensible for partial functions. The first answer is that the degree is 1 because
APXOR matches the value of the linear function x1 + · · · + xn on all points of interest. However this
function cannot represent the computation of any decision tree because it outputs values that are not
probabilities, i.e. outside the range [0, 1], on inputs that are outside the promise Π. In contrast decision
trees always output 0 or 1, even on inputs outside the promise.

This motivates an alternative definition which requires not only that the polynomial represents the
function on inputs satisfying the promise, but also that it outputs 0 or 1 on inputs outside the promise.

Definition 16. The (ε-approximate) degree of a partial function f : Π → {0, 1} is the best possible (ε-
approximate) degree among all total functions from {0, 1}n → {0, 1} that extend f .

In the next lecture we will show that the 1/3-approximate degree of both OR and APXOR are Θ(
√
n).

As their randomized query complexity is Ω(n), Claim 6 is not very tight in this case. In contrast, the
approximate degree of the MAJORITY function on n bits is Ω(n). The approximate degree of APXMAJ
is not known.
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