
CSI 5138: Computational Complexity Lecture 5
University of Ottawa, Fall 2023

Quantum computation is an extension of randomized computation that captures the ability of quantum
mechanical devices to occupy a “superposition” of states. Quantum computers have not yet been built but
there is reason to hope that they will be in the future. In contrast to the practical difficulties of quantum
computing, a well-developed theory of their abilities and limitations has been around since the 1980s and
remains an active area of research.

Besides applications like simulating quantum systems in physics and chemistry, quantum computers
are interesting because they can be used to solve some problems much faster than classical computers.

1 Reversible computation

One property of quantum mechanical systems is that they must be reversible: No loss of information can
happen while the system is evolving unobserved. Classical computation is not reversible. I can erase my
memory and forget what was written there before.

Deterministic classical computation can be made reversible at the cost of more memory. One interesting
example of reversible computation that we already saw is the simulation of circuits by branching programs.
To implement this simulation we designed a 3-register machine that starts in the memory state (A,B,C)
and ends in (A,B,C + f ·B), where f is the function to be computed. If we computed f again starting in
this state we would recover the original state (A,B,C).

A circuit can be made reversible by replacing all gates (instructions) with “reversible gates”. It is
enough to do this for not and and gates as they form a complete basis. not is already reversible,
while and can be simulated by the reversible gate:1

T |x, y, z⟩ = |x, y, z xor (x and y)⟩.

When the third input register z is initialized to zero the corresponding output is precisely x and y. The
gate is now reversible: Applying T to its own output recovers the original state |x, y, z⟩.

Any sequential computation implemented with these gates can be “undone” by applying the same gates
in reverse order. To be concrete think of the formula

f = (not (x1 and x2)) and x3.

To implement this formula reversibly, we introduce extra registers y1 and y2 meant to store the intermediate
and final value of the formula evaluation. We then run the sequence of instructions T |x1, x2, y1⟩, not |y1⟩,
and T |y1, x3, y2⟩ in order. These have the following effect on the state:

|x1, x2, x3, y1, y2⟩
T |x1,x2,y1⟩−−−−−−−→ |x1, x2, x3, y1 and (x1 xor x2), y2⟩
not |y1⟩−−−−−→ |x1, x2, x3, y1 and not (x1 and x2), y2⟩

T |y1,x3,y2⟩−−−−−−−→ |x1, x2, x3, y1 xor not (x1 and x2), y1 xor y2 xor f⟩.

If y1 and y2 were initialized to zero, the value of f can be read off from the third registers. The computation
is reversible because no matter what the five registers were initially set to their values can be recovered
from the final state (by applying the same instructions in reverse order).

From a global perspective, a reversible computation is simply a permutation of the states. This permu-
tation is obtained by composing local permutations corresponding to the gates that only act on 2 or 3 bits
of the state at a time. In the example we just did, there are 32 possible states described by the 5-bit state

1For now |x1, . . . , xn⟩ is just fancy notation for the sequence/string x1 . . . xn.

1

string |x1, x2, x3, y1, y2⟩. The computation has the effect of permuting all these strings: It swaps |00000⟩
and |00011⟩, it swaps |00001⟩ and |00010⟩, and so on.2

In the analysis of sublinear-time computations, we were interested in query complexity, that is in
counting how many times the algorithm queries a bit of its input x. In the non-reversible setting, we can
think of input queries as being implemented by a “query gate” that asks for the i-th bit of the queried
string x. This query gate can also be implemented reversibly as Qxqi, z = |i, z xor xi⟩. If z is initialized
to zero, it contains the value xi after evaluation.

In conclusion, a reversible computation can be described by an initial state |s0⟩ = |s1, . . . , sn⟩ and a
sequence of local permutations L1, . . . , Lt applied to this state, resulting in the final state

|st⟩ = Lt · · ·L1|s0⟩. (1)

The notation Li|s⟩ stands for “permutation Li applied to string s”. If the computation makes (at most)
q queries, then (at most) q of the permutations L1, . . . , Lt implement query gates. The other ones are
completely independent on the input x. If we lump those permutations together in chunks of (possibly
non-local) permutations, we obtain that a reversible q-query algorithm implements a state transformation
of the form

|st⟩ = PqQ
x
qPq−1Q

x
q−1 · · ·P1Q

x
1P0|s0⟩, (2)

where P0, . . . , Pq are permutations that do not depend on x and Qx
1 , . . . , Q

x
q are (reversible) queries to x.

Randomized register machines As soon as we try to enhance reversible computation with the ability
to produce random bits we run into trouble. The (classical) process of producing randomness is not
reversible: A “random register” takes value |0⟩ zero with probability half and |1⟩ with probability half
regardless of what was in there before so the initial information is lost.

We can still model randomized computation as a register state machine, but some of the gates no
longer represent permutations of the registers. In particular the operation R(s1) meaning “generate a
random number in the first register” sends both states of the form |0s2 . . . sn⟩ and |1s2 . . . sn⟩ into the state
|0s2 . . . sn⟩ with probability half and |1s2 . . . sn⟩ with probability half.

Once the start state and input are fixed, the state of an n-register machine at any point in time is
a probability distribution p over all 2n possible register values x ∈ {0, 1}n. Every instruction induces
a transformation of this distribution p into a new distribution p′: For example the instruction R(s1)
randomizes the value of register 1 while leaving all others intact, in which case

p′(0s2 . . . sn) = p′(1s2 . . . sn) =
1

2
p(0s2 . . . sn) +

1

2
p(1s2 . . . sn) for all y ∈ {0, 1}n−1.

On the other hand, an instruction like T (s1, s2, s3) preserves the values of the probabilities but permutes
the states they correspond to, namely

p′(s1s2s
′
3s4 . . . sn) = p(s1 . . . sn), where s′3 = s3 xor (s1 and s2).

The transformations from p to p′ are linear and stochastic: Each p′(s′) is a nonnegative linear combination
of p(s), and p(s) add up to one. The composition of stochastic linear transformations is also a stochastic
linear transformation, so the final state p is also a probability distribution.

2 Quantum Computation

In a quantum system with N states, each of the N possible “standard basis” states s corresponds to a
vector |s⟩ in (N -dimensional) Hilbert space. These vectors form an orthonormal basis: They are orthogonal

2In fact it is an involution: all permutation cycles have length 1 or 2.

2

vectors of unit length. The state of the quantum system can be any unit vector in N dimensions, namely
any vector of the form

|v⟩ =
∑

a(s) · |s⟩, where
∑
s

a(s)2 = 1.

The amplitudes a(s) may be positive, zero, negative, or even complex numbers. The state of the quantum
system can only be manipulated via unitary transformations, namely linear transformations that preserve
the length of vectors.

Quantum systems can occupy a superposition of states: For example, a 1-qubit quantum system can
be in either of the two “basis states” |0⟩ or |1⟩, but also in any length-preserving superposition of them
like 1√

2
|0⟩ + 1√

2
|1⟩ and also 1√

2
|0⟩ − 1√

2
|1⟩. An “n-qubit” quantum computer has 2n possible base states

|s⟩ : s ∈ {0, 1}n. At any given time its state is some superposition of them.
The distinction between being a superposition and a probability distribution is important: Unitary

transformations are invertible, but stochastic transformations are not (unless they are permutations). For
this reason, any unobserved quantum process, including a computation, can always be reversed: The in-
put can be “uncomputed” from the output. Since permutations are in particular orthogonal (a permuted
orthogonal basis remains orthogonal), quantum computations generalize deterministic computations. Ran-
domized computations, on the other hand, are not reversible, so it is less clear that they can be simulated
quantumly.

It turns out that they can. The invariant maintained by the simulation is that if the classical machine
is in state s with probability p(s) then the quantum machine will be in quantum state

∑√
p(s) · |s⟩: The

amplitudes are square roots of the probabilities. Since quantum transformation preserve length, i.e. sums
of squares of amplitudes, the probabilities always add up to one. The instruction “generate a random bit”
can be implemented by the Hadamard gate H:

H|0⟩ = |0⟩+ |1⟩√
2

H|1⟩ = |0⟩ − |1⟩√
2

.

If we represent |0⟩ and |1⟩ as basis vectors in the plane, this has the effect of rotating the state by −45
degrees and then flipping it about the |0⟩ axis. Repeating the transformation recovers the original state:
H2 is the identity. The squared amplitudes of the state H|0⟩ are precisely the probabilities of a random
bit.

In this simulation all of the amplitudes of the quantum machines are positive. One property of quan-
tum computation that makes it potentially more powerful than randomized classical computation are the
negative amplitudes: While probabilities can only add up, amplitudes can also cancel out.

At the end of a randomized computation, state |s⟩ is “observed” with probability p(s). At the end of a
quantum computation, the quantum computer is in some superposition state

∑
a(s) · |s⟩. A non-reversible

operation called a measurement is then performed in which the value s is sampled with probability |a(s)|2.
This measurement destroys the superposition state. If a fresh sample is needed the computation must be
restarted.

To summarize, quantum computations have the same forms (1) and (2) as reversible classical computa-
tions, but the relevant “state change” operators Li, Pi are now unitary of dimension N ×N for an N -state
machine. The final state is a superposition of the N states

∑
a(s) · |s⟩. A measurement is then performed

which outputs s with probability |a(s)|2. (This is a bare-bones model of a quantum computer that can be
extended with more features like partial measurements.)

3 The Power of Quantum Queries

To illustrate a quantum ability that is impossible to obtain classically, we give an algorithm for computing
the XOR of two bits x0 xor x1 with a single quantum query to x. In this example N = 4 and the standard
basis states are |00⟩, |01⟩, |10⟩, and |11⟩. We can think of the state of the quantum computer as consisting
of two Boolean registers, or qubits.

3

Prepare the superposition state |s0⟩ = 1
2(|00⟩ − |01⟩+ |10⟩ − |11⟩).

Apply a query gate Qx.
Apply a Hadamard gate H to the first register (denoted by H1).
Measure and output the first register’s value.

The state |s0⟩ is an example of a product state: It can be factored as

|s0⟩ = |0⟩+ |1⟩√
2

· |0⟩ − |1⟩√
2

.

To analyze this algorithm we can explicitly calculate the final state H1Q
x|s0⟩ for all possible inputs

x ∈ {00, 01, 10, 11}. Recall that Qx is the linear transformation Qx|iz⟩ = |i(xi xor z)⟩. For example, when
x = 00, Qx is the identity and using linearity we get

H1Q
00|s0⟩ = H1|s0⟩ =

(
H

|0⟩+ |1⟩√
2

)
· |0⟩ − |1⟩√

2
= |0⟩ · |0⟩ − |1⟩√

2
.

The first register’s value is zero with amplitude one, so the measurement will output zero with probability
one. When x = 01, Qx does not change |0z⟩ but sends |1z⟩ to |1z⟩. Therefore

Q01|s0⟩ = 1

2
(|00⟩ − |01⟩ − |10⟩+ |11⟩) = |0⟩ − |1⟩√

2
· |0⟩ − |1⟩√

2
,

from where H1Q
01|s0⟩ = |1⟩ · (|0⟩ − |1⟩)/

√
2, and the measurement outputs one as desired. You can (and

should) verify that H1Q
10 = −|1⟩ · (|0⟩ − |1⟩)/

√
2 and H1Q

11 = −|0⟩ · (|0⟩ + |1⟩)/
√
2. In all cases the

measurement produces the correct answer.
The analysis checks out but does not explain how one might have discovered this algorithm. One

complication in this algorithm is that we have to use two qubits of memory just to implement the query
gate Qx. There is an alternative query gate Φx that returns the answer not in a separate register but in
the phase of the query itself:

Φx|i⟩ = (−1)xi |i⟩.

This phase-query gate Φx can be implemented by the following sequence: Apply H to the answer register,
then Qx, then another H to the answer register. These operations preserve |i0⟩ regardless of the value of
xi. On the other hand, |i1⟩ is preserved when xi = 0 but flipped when xi = 1.

Using phase-query gates the action of this algorithm on the first qubit has a simpler description: Start
with the state H|0⟩ = (|0⟩ + |1⟩)/

√
2 and apply a phase-query Φx. If x0 = x1 then the state after the

query is ±H|0⟩; if not it is ±H|1⟩. The two types of states are orthogonal to one another so they can be
distinguished perfectly after a suitable orthogonal transformation (in this case, another Hadamard gate)
and measuring the outcome.

4 Grover’s Algorithm

We now consider the search problem of finding a marked item in the database, provided that exactly one
such item exists.3 Given a string x ∈ {0, 1}n, the task is to find a marked index i such that xi = 1 under
the promise that exactly one such index exists. Solving this problem in particular gives the ability to
compute the APXOR function, whose randomized query complexity is Ω(n). Grover’s algorithm solves it
using O(

√
n) quantum queries.

3The algorithm works even if there are multiple marked items, provided we know the number of marked items say within
a factor of two.

4

Grover’s algorithm is based on the following transformation which acts on the space spanned by the
basis vectors |1⟩, . . . , |n⟩:

S|i⟩ = 2√
n
|+⟩ − |i⟩,

where |+⟩ = (|1⟩+ · · ·+ |n⟩)/
√
n. This is a unitary transformation. One way to check this is to show that

S|1⟩, . . . , S|n⟩ is an orthogonal basis. The “braket notation” is very convenient for such calculations:

⟨i|S⊤S|j⟩ =
(

2√
n
⟨+| − ⟨i|

)(
2√
n
|+⟩ − |j⟩

)
=

4

n
⟨+|+⟩ − 2√

n
⟨i|+⟩ − 2√

n
⟨+|j⟩+ ⟨i|j⟩.

The sum of the first three terms vanishes because |+⟩ is a unit vector which has value 1/
√
n in the i-th

and j-th coordinate. Thus S|i⟩ and S|j⟩ have the same inner product as |i⟩ and |j⟩ so the transformation
preserves orthogonality. Applied to a superposition state, S averages out the amplitudes in the |+⟩ direction
then subtracts the original state:

S
∑

a(i)|i⟩ = 2a
√
n · |+⟩ −

∑
a(i)|i⟩ =

∑
(2a− a(i))|i⟩ where a =

a(1) + · · ·+ a(n)

n
.

This transformation preserves the average value of the amplitudes, but it changes their individual values.
To get a sense of what happens, suppose that initially all amplitudes a(i) are 1/

√
n, except a special

marked one that has value a(i∗) = −1/
√
n. The average of these amplitudes is (1 − 2/n)/

√
n ≈ 1/

√
n.

After applying S the new amplitudes become (1− 4/n)/
√
n ≈ 1/

√
n, except the marked one which grows

to (3− 2/n)/
√
n ≈ 3/

√
n. The amplitude of the marked item has grown by about 2/

√
n. Thus S has the

effect of “spreading out” the amplitudes apart.
What happens if we repeat? The transformation S is its own inverse, so repeating S annulls all the

gains. However, if we flip back the phase of the marked item’s amplitude to −(3−2/n)/
√
n, then applying

S again increases the magnitude back to about 2/
√
n − 3/

√
n = 5/

√
n. Each time we apply a phase flip

followed by S the amplitude grows by about 2/
√
n. After O(

√
n) steps we would expect it to reach a value

close to 1.

Grover’s algorithm:
Prepare the initial state |+⟩ = (|1⟩+ · · ·+ |n⟩)/

√
n.

Repeat the following t times:
Apply a phased query Φx.
Apply S.

Measure and output the measured string.

The number of steps t is a number on the order of
√
n. It will be described precisely in the analysis.

To understand this algorithm we need to figure out the effect of applying SΦx repeatedly. One way to
do this is to calculate the eigenvalues and eigenvectors of this transformation. There is also a more intuitive
geometric interpretation. For a string x all but one of whose entries xi∗ are zero, the transformation Φx is
a reflection about the plane perpendicular to |i∗⟩. The transformation S on the other hand is a reflection
about the |+⟩ vector.

Thus starting with the |+⟩ vector, the state is reflected about the plane perpendicular to |i∗⟩, then
about |+⟩, then about the plane perpendicular to |i∗⟩ again, and so on. This vector will always remain in
the plane spanned by |i∗⟩ and |+⟩. A reflection in the plane perpendicular to |i∗⟩ amounts to a reflection
about the vector

|i∗⟩ =
√

n

n− 1

(
|+⟩ − 1√

n
|i∗⟩

)
=

1√
n− 1

∑
i ̸=i∗

|i⟩.

In this notation, Grover’s algorithm has a simple geometric description:

5

1 Set the initial state |s⟩ to |+⟩ = (|1⟩+ · · ·+ |n⟩)/
√
n.

2 Repeat the following t times:
3 Reflect |s⟩ about |i∗⟩ and then about |+⟩.
4 Measure and output the measured string.

If θ be the angle between |+⟩ and |i∗⟩, the transformation 3 has the effect of decreasing the angle
between |s⟩ and |i∗⟩ by 2θ as shown in the following figure:

|i∗⟩

|+⟩

|i∗⟩

|s⟩

θ

|i∗⟩

|+⟩

|i∗⟩

|s⟩

θ

|i∗⟩

|+⟩

|i∗⟩

|s⟩

old |s⟩

θ

2θ

Initially, θ is the angle between |+⟩ and |i∗⟩, so sin θ = ⟨+|i∗⟩ = 1/
√
n. Using the Taylor approximation

sin θ = θ − O(θ3) we get that θ = 1/
√
n − O(1/n3/2). After t steps the angle between |s⟩ and |i∗⟩ is

(2t+ 1)θ. If we choose 2t+ 1 to be the odd integer closest to π/2θ, which is on the order of
√
n, the angle

between |s⟩ and |i⟩ becomes at most θ. The probability that the measurement results in i∗ is then at least
cos θ ≥ 1− θ2/2 = 1−O(1/n).

5 Quantum Query Complexity and Approximate Degree

Can Grover’s algorithm be improved? How do we even bound the query complexity of a quantum algo-
rithm? Recall that the randomized query complexity of an algorithm was lower bounded by its approximate
degree. It turns out that this is almost true for quantum algorithms also. The quantum query complex-
ity Qε(f) is the smallest possible number of queries made by a quantum algorithm computing f with
probability at least 1− ε on all inputs.

Lemma 1. For every q-query quantum algorithm A there exists a polynomial p of degree at most 2q so
that p(x) equals the probability that A accepts x for all x ∈ {0, 1}n.

Proof. We show that the amplitudes of the state |st⟩ in (2) of the computation after q queries are linear
combinations of q-juntas (i.e. functions of the input that depend on at most q variables). This is true for
the initial state P0|s0⟩ which doesn’t depend on x. Suppose it is true after q − 1 queries. The effect of the
i-th query Qx

i is to map register |i, z xor xi, y⟩ to |i, z, y⟩. After the query, the amplitude a(i, z, y) is a
sum of (q − 1)-juntas Ji,z xor xi,y that may depend on xi but not on the other inputs. So each amplitude
is a sum of q-juntas. After this query the algorithm applies a unitary transformation Pq which is linear
and does not change the property. Since the probability of an accepting measurement is a sum of squares
of amplitudes, it is a sum of juntas that now depend on at most 2q inputs each. When x is a 0/1 input
this is a polynomial of degree at most 2q.

In particular, d̃egε(f) ≤ 2Qε(f). Therefore quantum query complexity is also polynomially related to
all other complexity measures from the last lecture:

deg1/4 ≤ sens1/2 ⪯ 1
2 d̃eg ≤ Q ⪯ R1/3 ≤ R0 ≤ D ≤ deg2 · bsens ⪯ deg2 · d̃eg

2
≤ deg4.

6

To complete the chain of inequalities it remains to prove that sens(f) ≤ bsens(f) ≤ Ω
(
d̃eg(f)2

)
, which we

stated without proof in the last lecture. This is a consequence of the next lemma.

Lemma 2. Let APXOR be the n-input partial function that evaluates to 0 at 0n and to 1 at strings with
exactly one 1. If p is a polynomial that 1/3-approximates APXOR on all such strings and takes values
between 0 and 1 on all of {0, 1}n then p has degree Ω(

√
n).

Therefore d̃eg1/3(APXOR) = Ω(
√
n). Any function of block sensitivity n has APXOR on n inputs

“embedded” in it. By linearity we may assume the block sensitivity is achieved at zero. If we identify the
inputs in every block with the same variable xi and fix the other inputs to a constant then the degree cannot
increase, and the resulting function is consistent with APXOR. Therefore the bsens(f) ≤ Ω

(
d̃eg(f)2

)
for

every function f .
Moreover, it follows from these two lemmas that Grover’s algorithm has optimal quantum query com-

plexity:

Corollary 3 (Bennett-Bernstein-Brassard-Vazirani Theorem). Quantum search of an n-bit database re-
quires

√
n queries.

Two distributions X and Y on n-bit strings are k-wise indistinguishable if E[J(X)] = E[J(Y)] for every
k-junta J .

Claim 4. There is an ε > 0 so that for sufficiently large n, there exist ε
√
n-wise indistinguishable distri-

butions X and Y such that Pr[X is the all-zero string] ≥ 0.99 and Pr[Y has exactly one 1] ≥ 0.62.

Proof of Lemma 2. For technical reasons we prove the lemma for d̃eg0.3(f) which is O(d̃eg1/3(f)) and

we work with the complement function APXOR. Assume for contradiction that some total function f
extending APXOR can be represented as p(x) + e(x), where p has degree 0.01

√
n and |e(x)| ≤ 0.3 for

every x. By linearity of expectation,

E[f(X)]− E[f(Y)] = (E[p(X)]− E[p(Y)]) + (E[e(X)]− E[e(Y)]).

By linearity of expectation again, the first term is zero: p is a linear combination of low-degree monomials,
each of which is a junta that cannot distinguish X from Y . Since |e(x)| is bounded by 0.3, the second term
can be at most 0.6, so

E[f(X)]− E[f(Y)] ≤ 0.6.

On the other hand, E[f(X)] must be at least 0.99 because X places this much probability on the all-zero
input. But E[f(Y)] can be at most 1− 0.62 because Y places at least 0.62 probability on the inputs that
have exactly one 1. So the difference on the left is at least 0.99 − (1 − 0.62) = 0.61 which is larger than
0.6, a contradiction.

Optional reading: Proof of Claim 4

We represent bits by −1 and 1. Let ϕ : {−1, 1}n → R be the function

ϕ(x) =
(∏n

i=1
xi

)
· ES

[∏
i∈S

xi

]2
,

where S is a random subset of {1, . . . , n} of size at most (n − d)/2 (chosen uniformly among all such
subsets), d = ε

√
n, and ES is expected value. The distributions over X and Y are specified by their

probability mass functions

µ(x) = max{2ϕ(x)/Z, 0} and ν(x) = max{−2ϕ(x)/Z, 0}, where Z =
∑

|ϕ(x)|.

Here as in the rest of the proof summations range over all x ∈ {−1, 1}n.
µ and ν are probability mass functions: Both take nonnegative values so it suffices to show that

∑
µ(x) =∑

ν(x) = 1. This is a consequence of the following fact:

7

∑
ϕ(x)p(x) = 0 for all polynomials p of degree less than d.

The reason is that all monomials in (the multilinear expansion of) ϕ have degree at least d, so the multilinear

expansion of ϕ · p cannot have a degree-zero term, i.e., ϕ̂p(∅) = 2−n
∑

ϕ(x)p(x) = 0. Plugging in p = 1
we obtain

∑
ϕ(x) = 0, so

∑
µ(x) =

∑
ν(x). By the choice of Z,

∑
µ(x) +

∑
ν(x) = 2 so each of µ and ν

must add up to one.

µ and ν are (d−1)-wise indistinguishable: Any junta J that depends on less than d inputs is a polynomial of
degree less than d and

∑
ϕ(x)J(x) = 0. Since ϕ is proportional to µ−ν we get

∑
µ(x)J(x) =

∑
ν(x)J(x),

or equivalently E[J(X)] = E[J(Y)].

X is the all-ones string 1n with probability at least 0.99: X equals 1n with probability µ(1n) = 2ϕ(1n)/Z =
2/Z. We can calculate Z exactly:

Z =
∑

Ex

[∏
i∈S

xi

]2
=

∑
ES

[∏
i∈S

xi

]
ET

[∏
i∈S

xi

]
=

∑
ES,T

[∏
i∈S⊕T

xi

]
= ES,T

∑
x∈{−1,1}n

∏
i∈S⊕T

xi,

where ⊕ is symmetric set difference. The terms S ̸= T vanish because the product averages out to zero
and take value 2n when S = T . Therefore Z = 2n Pr[S = T] and

Z

2
= 2n−1 Pr[S = T] = 2n−1

/((
n
0

)
+ · · ·+

(
n

(n−d)/2

))
.

In words, 2/Z the probability that a random 0/1 string has at most (n−d)/2 ones conditioned on it having
at most n/2 ones. By the Central Limit Theorem when d = ε

√
n, 2/Z approaches the probability that a

Normal(0, 1) random variable is greater than ε conditioned on it being positive. When ε tends to zero this
probability tends to 1, so for ε sufficiently small µ(1n) ≥ 0.99.

Y has exactly one −1 with probability at least 0.62: Let N be the set of strings with exactly one −1 so that
the desired probability is

∑
x∈N ν(x). Fix some x ∈ N . Conditioned on the size of S being s (and S being

otherwise random),
∏

i∈S xi takes value −1 with probability s/n and 1 with the remaining probability, so

ES

[∏
i∈S xi

]2
= E[1− 2|S|/n]2 = E[Wn]

2/n, where Wn is the random variable Wn = (n− 2|S|)/
√
n. Since∑

x∈N ν(x) is 2/Z times the sum of n such terms it equals 2E[Wn]
2/Z.

The random variable |S| equals the number of ones B in a random n-bit string conditioned on there
being at most (n− d)/2 ones. Therefore the CDF of w is

Pr[Wn ≤ w] = Pr[|S| ≤ (n− w
√
n)/2]

= Pr[B ≤ (n− w
√
n)/2 | B ≤ (n− ε

√
n)/2]

=
Pr[B ≤ (n− w

√
n)/2]

Pr[B ≤ (n− ε
√
n)/2]

.

By the Central Limit Theorem, the numerator and denominator converge to Pr[N ≤ w] and Pr[N ≤ ε]
respectively, for a Normal(0, 1) random variable N . Therefore

limn→∞ Pr[Wn ≤ w] = Pr[N ≤ w | N ≤ ε].

We would therefore expect that
limn→∞ E[Wn] = E[N | N ≤ ε], (3)

8

from where by continuity of the function ε → E[N | N ≤ ε] we can calculate

limε→0 limn→∞ E[Wn] = E[N | N ≤ 0] =
2√
2π

∫ 0

−∞
xe−x2/2dx = −

√
2

π
,

which gives limε→0 limn→∞
∑

x∈N ν(x) = 2/π > 0.62.
To be rigorous we should prove (3). It is a bit easier to work with −Wn instead of Wn as −Wn

is non-negative. Let us also write Nε for N conditioned on N ≥ ε. By the Central Limit Theorem
Pr[−Wn ≥ w] and Pr[Nε ≥ w] are δn-close for some δn that goes to zero as n increases. Using the formula
E[X] =

∫∞
0 Pr[X ≥ w]dw which holds for all non-negative X we can bound the difference in expectations

by

|E[−Wn]− E[Nε]| =
∣∣∣∣∫ ∞

0
(Pr[−Wn ≥ w]− Pr[Nε ≥ w])dw

∣∣∣∣
≤

∫ B

0
|Pr[−Wn ≥ w]− Pr[Nε ≥ w]|dw

+

∫ ∞

B
Pr[−Wn ≥ w]dw +

∫ ∞

B
Pr[Nε ≥ w]dw.

Set B = 1/
√
δn. By the Central Limit Theorem the integrand in the first term is at most δn so the

value of the integral is at most
√
δn. The other two terms can be handled using large deviation bounds.

First, Pr[Nε ≥ w] = O(Pr[N ≥ w]) = O(e−w2/2). For Pr[−Wn ≥ w] we can apply for instance the
Chernoff bound to conclude that it is also O(e−w2/2). Therefore, up to a constant, both integrals are at
most O(e−B2/2) = O(e−1/δn). In the limit as δn goes to zero, the right-hand terms go to zero and so the
expectations approach one another.

References

The presentation of quantum computation is partially based on Chapter 10 in the Arora-Barak textbook.
The description of Grover’s algorithm also borrows from these lecture notes of Ryan O’Donnell. Lemma 1
was proved by Beals, Buhrman, Cleve, Mosca, and de Wolf. Lemma 2 was proved by Nisan and Szegedy.
Corollary 3 was previously proved by Bennett, Brassard, Bernstein, and Vazirani using a different method.

9

https://en.wikipedia.org/wiki/Chernoff_bound
https://www.cs.cmu.edu/~odonnell/quantum15/lecture04.pdf

	Reversible computation
	Quantum Computation
	The Power of Quantum Queries
	Grover's Algorithm
	Quantum Query Complexity and Approximate Degree

