
CSI 5138: Computational Complexity Lecture 7
University of Ottawa, Fall 2023

A pseudorandom generator is an efficient deterministic algorithm or circuit that takes a short uniformly
random seed as its input and produces a longer output that looks indistinguishable from a uniformly random
string of the same length to all efficient “adversaries” that do not know the seed.

Definition 1. Two distributions X and Y are ε-indistinguishable by size-S circuits if for all circuits of
size at most S, |Pr[D(X) = 1]− Pr[D(Y) = 1]| < ε.

Definition 2. A function G : {0, 1}k → {0, 1}m, where k < m is an ε-pseudorandom generator against
size-S circuits if the distribution G(s) where s ∼ Bk is uniform is ε-indistinguishable from the uniform
distribution on {0, 1}m by size S circuits.

The circuit D is called a distinguisher, and the difference between the two probabilities is called the
advantage of D. Since the output of a pseudorandom generator is longer than its input, its output is
statistically distinguishable from a uniformly random string: The distinguisher that outputs 1 on input y
if y = G(s) for some s and 0 otherwise has advantage at least 1 − 2k−m. A brute-force implementation
of this distinguisher would need to check whether y equals g(s) for any one of the 2k strings y, thereby
taking up exponential (in k) size. The gold standard in the design of pseudorandom generators is to rule
out distinguishers that are substantially better than brute force.

The notion of efficient indistinguishability is a very strong one: It implies that no single bit is substan-
tially biased, no pair of bits are substantially correlated, the majority of any odd number of bits is close
to unbiased, if the string is interpreted as the adjacency matrix of the graph then the graph has no sparse
cut, and so on, as all these conditions can be verified by efficient distinguishers.

There are two types of pseudorandom generators depending of the relative computational power of the
generator and the distinguisher. Pseudorandom generators that are more complex than their distinguishers
have applications to the deterministic simulation of randomized algorithms and proofs. Generators that are
pseudorandom even against distinguishers of higher relative complexity are a central object in cryptography.

In the last lecture we saw an effective tool for arguing that some NP-decision and search problems are
unlikely to admit much faster algorithms than brute-force search: NP-completeness. We might therefore
expect that NP-completeness should play a role in the design of pseudorandom generators. One important
difference is that Definition 2 is required to hold for a random choice of input s, while NP-hardness
only guarantees hardness against worst-case inputs. In contrast, pseudorandom generators are related to
questions about average-case hardness.

1 Simulating randomness

Here is a strategy for deterministically simulating efficient randomized algorithms for decision problems,
such as the algorithm for polynomial identity testing. Suppose that we have a decision problem f , a
randomized algorithm A, and an input x ∈ {0, 1}n such that A solves f on x with a clear majority, namely

Prr∼{0,1}m [A(x, r) = f(x)] ≥ 2/3

where m is the amount of randomness used by the algorithm on inputs of length n. If A runs in time t(n)
on inputs of length n then there is a circuit Cx of size O(t(n)2) such that

Prr∼{0,1}m [Cx(r) = f(x)] ≥ 2/3.

Now if G : {0, 1}k → {0, 1}m was a, say, 1/6-pseudorandom generator against size O(t(n)2) circuits then∣∣Prs∼{0,1}k [Cx(G(s)) = f(x)]− Prr∼{0,1}m [Cx(r) = f(x)]
∣∣

=
∣∣Prs∼{0,1}k [Cx(G(s)) = 1]− Prr∼{0,1}m [Cx(r) = 1]

∣∣ < 1/6

1

so in particular

Prs∼{0,1}k [A(x,G(s)) = f(x)] = Prs∼{0,1}k [Cx(G(s)) = f(x)] > 2/3− 1/6 = 1/2.

We can now simulate A on input x deterministically by enumerating all possible outputs of G(s) and
observing what fraction of the time A(x,G(s)) accepts. If A were to accept, a majority of the outputs
G(s) should yield accepting computations; if A were to reject, the majority of them should yield rejecting
computations. If the output of G can be computed in time t′ then the simulation takes time O(2k(t(n) +
t′(k))). For a polynomial-time algorithm A both the size O(t(n)2) and the number of random bits m (which
is upper bounded by the size) is polynomial in n. If k grows at most logarithmically in m and t′(k) is at
most exponential, the whole simulation can be carried out in polynomial time implying that P = BPP.

Proposition 3. If there exists a constant C such that for all m there is a 1/6-pseudorandom generator
against size m with seed length k = C logm and output length m that is computable in time 2Ck = mC

(uniformly for all m) then P = BPP.

2 Distinguishing versus predicting

One criticism of the theory of NP-completeness that we saw last time is that it measures computational
hardness in terms of the worst-case running time of algorithms over all inputs of a given size. Sometimes it
is more relevant how algorithms behave on “typical” inputs. Average-case complexity assumes that inputs
come from some probability distribution and algorithms are allowed to err with some small probability
over the choice of input. Two types of algorithms that fit nicely into this setting are learning algorithms
(whose inputs consist of training examples, which are sometimes modeled as independent samples from
some distribution) and cryptographic adversaries (whose success is determined by how likely they are to
break a random execution of the scheme).

In average-case complexity the inputs come from some distributionD and we are interested in computing
the result correctly for typical inputs sampled from D. Let f be a function from {0, 1}n → {0, 1}.

Definition 4. An predictor for f with advantage ϵ under distribution D is a circuit P for which Pr[P (x) =
f(x)] ≥ (1 + ε)/2 when x is sampled from D.

To get a sense of the definition imagine D is a distribution on images x, half of which are cats and
half of which are dogs. The goal of the predictor P is to guess the true label of the image (0 for cat, 1 for
dog). Advantage 1 means perfectly accurate prediction, which is the same as deciding f . Advantage zero
can be achieved without training by always guessing “cat”; in general, one of the constants 0, 1 always has
nonnegative advantage.

A function is ε-unpredictable against size S if there does not exists a size S-predictor for f with
advantage at ε. The examples that we say in lectures 1-4 (PARITY for constant-depth AND/OR circuits,
MAJORITY for constant depth AND/OR/PARITY circuits, IP for read-once branching programs) are
not only hard to compute but also ε-unpredictable for any constant ε > 0 as the input length tends to
infinity.

As for general circuits, it can be shown by a counting argument that at most a 22
δn

fraction of all
functions are predicatable with advantage 2−δn by circuits of size 2δn for some constant δ > 0 (I think
δ = 1/8 is good enough). So functions that are very hard to predict certainly exist. We would be hard
pressed to find any “explicit” functions, say within NP, that are hard to predict, because proving a function
is hard to predict is only harder than proving it is hard to compute, which would resolve the P ̸= NP
question. Despite the lack of provably hard candidates there are very concrete examples of functions that
are believed to be hard to predict. We’ll say more about this shortly.

One useful insight of average-case complexity is that distinguishing and prediction are equivalent in
the following sense. A predictor P for f has the ability to distinguish the distribution (x, f(x)) from (x, b)
where b is a uniformly random bit that is independent of x. To distinguish, simply apply P to the x-part of

2

the input and accept if the second part (call it y) equals P (x). If the input is distributed like (x, f(x)) then
the distinguisher accepts precisely with probability Pr[P (x) = f(x)] = (1+ε)/2. If the input is distributed
like (x, b) then the distinguisher accepts with probability half because b is independent of the prediction.
Therefore ε-predictors of size S can be used to construct ε/2-distinguishers of size S+O(1). The converse
is also true:

Lemma 5 (Yao’s lemma). If (x, f(x)) is distinguishable from (x, b) (where b is a random bit independent
of x) with advantage ε by a size-S circuit then f is predictable with advantage 2ε by a circuit of size
2S +O(1).1

Stated in contrapositive form we obtain the following important corollary:

Corollary 6. If f : {0, 1}k → {0, 1} is ε-unpredictable against size S with respect to the uniform distribution
then the function G : {0, 1}k → {0, 1}k+1 given by G(s) = (s, f(s)) is 2ε-pseudorandom against size
S/2−O(1).

Thus unpredictability, i.e., average-case hardness for decision problems, can be converted into pseudo-
randomness.

Proof of Yao’s lemma. We prove the contrapositive. Assume D is a circuit such that∣∣Pr[D(x, f(x)) = 1]− Pr[D(x, b) = 1]
∣∣ ≥ ε,

Using D we want to construct another circuit P that predicts f with advantage ε. For this it will be first
convenient to get rid of the absolute value. By possibly replacing the circuit D by not D, we may assume
without loss of generality that

Pr[D(x, f(x)) = 1]− Pr[D(x, b) = 1] ≥ ε. (1)

Therefore, on average over the choice of x, the advantage ε(x) of the distinguisher is at least ε:

E[ε(x)] ≥ ε, where ε(x) = Pr[D(x, f(x)) = 1 | x]− Pr[D(x, b) = 1 | x].

For a fixed choice of x, the distinguisher D(x, y) computes one of four possible functions of y: the constant
0 or 1, the identity y, or negation not y. In the first two cases ε(x) must be zero, so a predictor that
outputs a random bit has conditional advantage Pr[P (x) = f(x) | x] = 1/2 = 1/2 + ε(x). If D(x, ·) is the
identity then f(x) equals one with probability 1/2+ ε(x), so a predictor that outputs 1 has this advantage
given x. If D(x, ·) is negation then f(x) equals zero with probability 1/2+ε(x), so a predictor that outputs
0 has this advantage given x. In summary, the advantage of the predictor

P : On input x,
Learn the function D(x, ·) by querying D(x, 0) and D(x, 1).
If D(x, ·) is a constant, output a random bit.
If D(x, ·) is the identity, output 1.
If D(x, ·) is negation, output 0.

is at least 1/2 + ε(x) given x, so at least E[1/2 + ε(x)] = 1/2 + ε on average.

1There is a different proof that gives advantage ε for size S +O(1).

3

3 The Nisan-Wigderson generator

One weakness of Corollary 6 is that it yields only one bit of pseurodrandomness beyond the “entropy” of the
seed s. To make use of Proposition 3 we need exponentially many pseudorandom bits. Those are provided
by the Nisan-Wigderson generator. We will say that a family Gm : {0, 1}k(m) → {0, 1}m of pseudorandom
generators is polynomial-time computable if there is an algorithm that on input s ∈ {0, 1}k(m) runs in time
polynomial in m (the output length of Gm) and outputs Gm(s).

Theorem 7 (The Nisan-Widgerson generator). For every polynomial S and every constant δ > 0 the
following holds. Suppose there is a decision problem f that can be decided in time 2O(t) on all inputs of
length t, but is unpredictable with advantage 2−δt/2 by circuits of size O(2δt) with respect to the uniform
distribution over {0, 1}t. Then there exists a polynomial-time computable family Gm : {0, 1}k(m) → {0, 1}m
of 1/6-pseudorandom generators against circuits of size at most m = S(n).

Such hard problems f are believed to exist, but I don’t know any natural candidate examples. The
usual interpretation of Theorem 7 is that it provides evidence for P = BPP. In particular, it supports
the belief that specific problems in BPP like polynomial identity testing should have efficient deterministic
algorithms, though the search for a concrete algorithm that is provably correct on all inputs without
additional assumptions is still ongoing.

Towards proving Theorem 7, let us first see how to get two additional bits of pseudorandomness from
Lemma 5: We run the generator on two independent seeds s1 and s2. Namely, we let G′(s1, s2) =
(G(s1), G(s2)). If D is a distinguisher such that∣∣Pr[D(G′(s1, s2)) = 1]− Pr[D(y1, y2) = 1]

∣∣ ≥ ε

then it must be the case that∣∣Pr[D(G(s1), G(s2)) = 1]− Pr[D(G(s1), y2) = 1]
∣∣ ≥ ε/2

or
∣∣Pr[D(G(s1), y2) = 1]− Pr[D(y1, y2) = 1]

∣∣ ≥ ε/2

and in either case we can obtain a distinguisher D′ such that∣∣Pr[D′(G(s)) = 1]− Pr[D′(y) = 1]
∣∣ ≥ 1/2

by hardwiring the suitable input that maximizes the advantage into D. By repeating this construction
using seeds s1, . . . , st we can obtain t(k + 1) pseudorandom bits out of a seed of length tk as long as t is
not too large (as the distinguishing advantage deteriorates by a factor of t).

To further shrink the seed length, we will allow parts of the strings s1, . . . , st to overlap. This motivates
the following definition.

Definition 8. A collection of sets T1, . . . , Tm ⊆ {1, . . . , k} is a combinatorial design with set size t and
intersection size t∩ if |Ti| = t for every i and |Ti ∩ Tj | ≤ t∩ for every i ̸= j.

Given a combinatorial design, we define a pseudorandom generator G : {0, 1}k → {0, 1}m by

G(s) = (f(s|T1), . . . , f(s|Tm))

where f : {0, 1}t → {0, 1} is the “hard” function and s|T is the substring of s indexed by the elements of
the set T . For example, if s = s1s2s3s4, then s|{2,4} = s2s4. Combinatorial designs with good parameters
can be computed efficiently.

Claim 9. For every c > 0 there is a family of combinatorial designs with

k = 6c2 logm t = c logm t∩ = logm.

Moreover, there is a deterministic algorithm that on input m runs in time mO(c2) and outputs the sets
T1, . . . , Tm.

4

In particular, for every fixed c we have k = O(logm), so the seed size is exactly what we were aiming
for. Let’s now check that G can be computed efficiently (in time poly(m)). To compute Gm, we first
construct the design in time mO(c2). We then need to evaluate m copies of f , each on an input of size
t = c logm. Since we assumed that f is computable in time 2O(t) = mO(c), the whole computation can be
done in time polynomial in m.

It remains to show that Gm is 1/6-pseudorandom against circuits of every polynomial size S(n) for a
suitable choice of constants c and δ. Towards a contradiction, suppose that for some distinguisher circuit
D of size S(n) we have

Prs∼{0,1}k [D(G(s)) = 1]− Prr∼{0,1}m [D(r) = 1] ≥ 1/6.

(As in the last proof, we can remove the absolute value without loss of generality.) Let’s expand this
definition:

Prs∼{0,1}k [D(f(s|T1), . . . , f(s|Tm)) = 1]− Prr1,...,rm∼{0,1}[D(r1, . . . , rm) = 1] ≥ 1/6. (2)

This formula does not appear all that useful. To see what is happening, we introduce of the following way
of “slowly” going from the pseudorandom distribution G(s) to the random distribution r: At each step,
we change one input of D from pseudorandom to random. If D can distinguish G(s) from r, then at some
step there must be a noticeable change in the behavior of C.

More formally, we consider the following sequence of hybrid distributions on inputs of D:

Hm : f(s|T1), . . . , f(s|Tm−1), f(s|Tm)
Hm−1 : f(s|T1), . . . , f(s|Tm−1), rm

...
...

...
H0 : r1, . . . , rm−1, rm.

Condition (2) tells us that Prr∼Hm [D(r)] − Prr∼H0 [D(r)] ≥ 1/6. Then there must be some j between 1
and m for which Prr∼Hj [D(r)]− Prr∼Hj−1 [D(r)] ≥ 1/6m, that is

Prs∼{0,1}k,rj+1,...,rm∼{0,1}[D(f(s|T1), . . . , f(s|Tj), . . . , rm) = 1]

− Prs∼{0,1}k,rj ,...,rm∼{0,1}[D(f(s|T1), . . . , rj , . . . , rm) = 1] ≥ 1/6m.

There must then exist a fixing of the values rj+1, . . . , rm that maximizes the above difference in probabilities.
As those are independent on s conditioning on this choice does not change the distribution on s. If we
hardwire this fixing into the circuit D, we obtain a circuit D1 of the same size such that

Prs[D1(f(s|T1), . . . , f(s|Tj−1), f(s|Tj)) = 1]− Prs,rj [D1(f(s|T1), . . . , f(s|Tj−1), rj) = 1] ≥ 1/6m.

Let s′ = s|Tj (this is a string of length t). There is now a fixing of all the bits of s outside s′ that maximizes
the above difference in probabilities. Let’s hardwire these bits into D1 and call the resulting circuit D2.
With respect to this fixing, for every i < j, f(s|Ti) becomes a function of at most logm bits in s′ (because
s′ intersects s|Ti in at most t∩ = logm positions). Let’s call this function gi(s

′). We then have

Prs′ [D2(g1(s
′), . . . , gj−1(s

′), f(s′)) = 1]− Prs′,rj [D2(g1(s
′), . . . , gj−1(s

′), rj) = 1] ≥ 1/6m.

Since each gi is a function of at most logm bits, it can be computed by a circuit of size O(2logm) = O(m).
If we compose the circuit D2 with the circuits for g1, . . . , gj−1, we obtain a single circuit D3 of size
S(n) +O(jm) = S(n) +O(m2) such that

Prs′ [D3(s
′, f(s′)) = 1]− Prs′,rj [D3(s

′, rj) = 1] ≥ 1/6m.

5

In words, (s′, f(s′)) is not 1/6m-pseudorandom for size S(n)+O(m2). By Yao’s Lemma there is a predictor
circuit P of size 2S(n) +O(m2) such that

Prs′ [P (s′) = f(s′)] ≥ 1/2 + 1/3m.

As f is a function on t = c logm bits, the advantage of P in terms of t is Ω(2−t/c) and its size is
2S(n) +O(m2) = O(22t/c). Choosing δ = 1/2c matches the claimed parameters and proves the theorem.

Proof of Claim 9. The sets T1, . . . , Tm are chosen greedily: Ti is the first set of size t that has intersection
size at most t∩ with all sets Tj , j < i. The running time is dominated by the number of possible choices

for each set which is at most 2k = mO(c2).
We show that a choice of Ti with the desired properties is always possible by the probabilistic method.

The probability that the intersection between the random set Ti and any fixed set Tj , j < i, both of size t,
exceeds size t∩ is at most the probability that Ti contains some S subset S of Tj of size t∩ that is already
contained in Tj . The probability that Ti contains a fixed such S equals t/k · (t − 1)/(k − 1) · · · (t − t∩ +
1)/(k − t∩ + 1) ≤ (t/k)t∩ . As there are

(
t
t∩

)
choices for S inside Tj , by a union bound

Pr
[
|Ti ∩ Tj | ≥ t∩

]
≤

(
t

t∩

)
·
(t

k

)t∩
≤

(et

t∩

)t∩
·
(t

k

)t∩
=

(et2

t∩k

)t∩
≤ 2− logm =

1

m
.

By another union bound over j, there must always exists a choice of Ti that has intersection less than t∩
with T1 up to Ti−1.

4 Cryptographic pseudorandom generators

In the constructions from the previous two sections the time that it takes to compute the pseudorandom
generator G is inherently larger than the time it takes to evaluate the hard function f as G must evaluate
one or several copies of f . Therefore the complexity of computing G will be larger than the complexity of
distinguishing the output of G from a uniformly random string.

In cryptographic applications the pseudorandom generator is usually part of the system and the dis-
tinguisher is the adversary that wants to break the system. It is usually assumed that the adversary is
willing to invest more resources into breaking the system than the honest parties use to run it. In this
setting generating even one additional bit of pseudorandomness beyond the seed length is challenging.

Cryptographic pseudorandom generators can be obtained from a simpler object called a one-way func-
tion. A one-way function is a function with multi-bit output that is easy to compute in the worst-case,
but hard to invert even on average.

Definition 10. A function f : {0, 1}n → {0, 1}m is (S, ε)-one way if for every circuit I of size at most S,
Prx∼{0,1}n [f(I(f(x)))) = f(x)] ≤ ε.

If P equals NP then the NP-search problem “given y find x such that y = f(x)” can be efficiently
solved, so proving the existence of one-way functions requires proving that P does not equal NP. There
are many conjectured examples of one-way functions, some with very simple structure. For example, if
m = n and every output bit of f is the majority of five randomly chosen input bits, f might be one-way
with high probability. Cryptographic pseudorandom generators can be obtained from one-way functions:

Theorem 11. For every function f : {0, 1}n → {0, 1}m computable by a circuit of size s there exists a
function G : {0, 1}k → {0, 1}k+1 computable by a circuit of size polynomial in s and n so that the following
holds: If f is (S, ε)-one-way then G is ε′-pseudorandom against size S′ circuits, where S′ = S − poly(s, n)
and ε′ = ε · poly(s, n).

6

Once one additional bit of pseudorandomness is obtained, it is possible to increase the length of the
output by applying the pseudorandom generator iteratively. Specifically, if G : {0, 1}k → {0, 1}k+1 is a
pseudorandom generator, then we iteratively define G0(s) = s and

Gd+1(s) = (G(first k bits of Gd(s)), last d bits of Gd(s)).

Then we can prove the following by induction on d.

Lemma 12. If G can be computed by a circuit of size s and G is ε-pseudorandom against size S circuits
then Gd is dε-pseudorandom against size S − (d− 1)s circuits.

Proof. For contradiction, let us suppose that Gd+1 is not pseudorandom. So there exists a circuit D of size
S − ds such that

|Pr[D(Gd+1(s)) = 1]− Pr[D(y) = 1]| ≥ (d+ 1)ε.

Here, Y is a truly random string of length k+ d+ 1. Now recall that Gd+1 was obtained by running G on
the first k bits of yd (the output of Gd) and copying the last d bits. Let xd = xLxR, where XL are the first
k bits and yR are the last d. Also let y = yLyR where yL are the first k+1 bits and YR are the last d bits.
Then

|Pr[D(G(xL), xR) = 1]− Pr[D(yL, yR) = 1]| ≥ (d+ 1)ε.

Now let z be a uniform string of length k independent of y. At least one of these two inequalities must
hold:

|Pr[D(G(xL), xR) = 1]− Pr[D(G(z), yR) = 1]| ≥ dε or

|Pr[D(G(z), yR) = 1]− Pr[D(yL, yR) = 1]| ≥ ε.

Suppose the first inequality holds. Then we can distinguish x from a truly random string as follows:

Circuit D′: On input u, write u = uLuR (the first k and last d bits) and output D(G(uL), uR).

This circuit D′ has size S − (d− 1)s and by the first inequality

|Pr[D′(xL, xR) = 1]− Pr[D′(z, yR) = 1]| = |Pr[D(G(xL), xR) = 1]− Pr[D(G(z), yR) = 1]| ≥ dε

soD′ distinguishes the output of Gd(s) from a random string with advantage dε, contradicting our inductive
assumption. So the second inequality must hold. But then we can distinguish the output of G from random
by the following circuit: On input u, choose a random string yR of length d and output D(u, y). By the
second inequality, this is a circuit of size S − ds+ d ≤ S that distinguishes the output of G from random
with advantage ε, contradicting the pseudorandomness of G.

7

	Simulating randomness
	Distinguishing versus predicting
	The Nisan-Wigderson generator
	Cryptographic pseudorandom generators

