
CSI 5138: Computational Complexity Lecture 8
University of Ottawa, Fall 2023

The million dollar question in computational complexity is “do all problems in NP have efficient algo-
rithms?” The conventional belief is that it is very unlikely, but a proof is still lacking after more than 50
years of research. In the first few lectures we gave examples of computational hardness in some restricted
models of computation: decision trees, small depth circuits, and restricted branching programs. If we could
generalize these methods to prove that, for example, solving satsifiability of 3CNF formulas on n inputs
requires circuits of size 2n

1/100
, we would have an example of an NP problem that does not have small

circuit families and so no efficient algorithms either.
There is an interesting explanation about why this seemingly promising approach has failed to yield

consequential results. The reason is that all known proofs of computational hardness are learning algorithms
in disguise. The learning algorithm asks to see outputs of the circuit for inputs of its choice and can then
predict the value of the circuit at a previously unseen input.

On the other hand, it is widely believed that there exist efficiently computable functions that are
not efficiently learnable. Such functions are called pseudorandom functions and can be constructed from
sufficiently strong pseudorandom generators. So if there was a proof that 3SAT on n inputs requires
circuits of size 2n

1/100
, either this proof would look very different from, say, the proof that parity on n bits

requires depth 3 circuits of size 2n
1/3

, or else pseudorandom functions do not exist, everything is learnable
efficiently, and cryptography is impossible.

1 Largeness and constructivity

The circuit lower bounds we proved in the first few lectures all followed the same pattern: We came up
with a separating property P that is true for the hard function but false for all functions computed by
small circuits in the class. For example, in the proof that PARITY requires decision tree depth n, one
separating property P (f) is

restzero(f): f does not restrict to a constant after fixing its first n− 1 inputs to zero.

PARITY satisfies restzero. Depth-(n − 1) decision trees to not. Hence PARITY cannot be computed
by any depth-(n− 1)-decision tree.

Razborov and Rudich noticed that all properties P underlying known proofs of circuit lower bounds
(for complete models) have two features (properties of properties): Smallness and constructivity.

Largeness

This property “f does not restrict to a constant after fixing its first n−1 inputs to zero” holds not only for
PARITY but also for large fraction of all possible functions: the probability that this is true for a random
function R is precisely 1/2. This is an example of a 1/2-large property.

Definition 1. A property P of boolean functions f : {0, 1}n → {0, 1} is (1 − δ)-large if the probability
that a random function fails to satisfy P is at most δ.

In words, the proof that PARITY requires decision tree depth n that is based on the separating property
P also proves that at least half of all possible functions require decision tree depth n. This is the largeness
feature: A lower bound proof for a specific function like PARITY also applies to a random function.

Let’s look at some other proofs. The proof that PARITY on n bits requires depth d AND/OR circuits

of size s = 2Ω(n1/(d−1)) in Lecture 2 was based on the following property:

restrand(f): At most a 1/3-fraction of all (n− 1)-restrictions fix f to a constant.
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The constant 1/3 is somewhat arbitrary but will serve to illustrate the point. restrand certainly holds
for PARITY. We used the switching lemma to show that it doesn’t hold for any size-s, depth-d AND/OR
circuit on n inputs. The probability that a random function has this property is overwhelming: For every
index i, there are 2n−1 (n − 1)-restrictions that leave the i-th variable unrestricted. The events “this
restriction fixes f” are independent of probability 1/2. By a Chernoff bound the probability that more
than 1/3 of those restrictions fix f to a constant is 2−Ω(2n−1). By a union bound over the n values of i,
the probability that restrand fails to hold for a random function is at most n · 2−Ω(2n−1), so restrand is
(1− 2−Ω(2n))-large.

The proof that MAJORITY on n inputs requires depth-d circuits of size 2Ω(n1/2d) relied on the property

polyapx(f): There does not exist an F2-polynomial of degree n/2−
√
n that agrees with f on

all but a 1/16-fraction of inputs.

In Lecture 2 we proved that polyapx holds for MAJORITY, but it does not hold for size 2o(s
1/2d)-size

depth-d AND/OR/PARITY circuits. This property also happens to be large. The number of functions

having this property is at most 2(
n

≤n/2−
√

n) (the number of possible polynomials) times
(

2n

≤2n/16

)
(the number

of disagreement patterns). It can be shown that the product of this numbers is at most 20.99·2
n
, so this

property is (1− 2−0.01·2n)-large.
The separating property between the IP function on 2n bits and read-k-times ranodmized branching

programs of width w = Ω(2n/2k) was

balancedrect(f): In all rectangles X × Y of size |X| · |Y | ≥ 10 · 2n of the matrix f , at least
1/3 of the values are zeroes and at least 1/3 of the values are ones.

It is again true that almost all functions have balancedrect: it is 1 − 2−Ω(2n)-large. (Proof sketch: Any
fixed rectangle with |X| = s, |Y | = t is balanced except with probability 2Ω(st) by a Chernoff bound.
By a union bound the probability that there exists a balanced rectrangle of these dimensions is at most(
2n

s

)(
2n

t

)
2−Ω(st) ≤ 2n(s+t)−Ω(st). If st ≥ 10 · 2n this is at most 2−Ω(2n). Taking a union bound over all

possible pairs of sizes s, t of which there are at most 22n gives the desired bound.)
To summarize, all of the lower bound proofs we saw were obtained using a common scheme. We came

up with a separating property between the hard function and the circuit model. It happened that all the
properties are large so the proof also shows that the circuit model cannot compute most functions. The
conclusion is not surprising owing to Shannon’s counting argument. What is a bit surprising is that the
proofs give an alternative way to reach the same conclusion without counting circuits. This feature of the
proofs, when coupled with the next one, turns out to be a weakness in the quest of size lower bounds for
general circuits.

Constructivity

Constructivity postulates that the relevant lower bound property is efficiently computable: A fairly small
circuit that can query the function f : {0, 1}n → {0, 1} at inputs of its choice can determine if the property
holds or not.

Such circuits are called oracle circuits. An oracle circuits accesses its input function f via oracle gates
that represent evaluations of f (so they have n input wires that, when fed with x, produce the singe output
f(x)). Oracle gates count towards the size of the circuit. The execution of an oracle circuit Cf (a circuit
C that is given oracle access to the function f) can be modeled as a decision tree whose input is the
2n-bit long string of values f(x) as x ranges over all 2n inputs. The depth of the decision tree is then the
maximum number of oracle gates on any input-output path in the circuit.

Definition 2. A property P of Boolean functions f : {0, 1}n → {0, 1} is S-constructive if P can be tested
by oracle circuits of size at most S.
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It turns out (for not completely understood reasons) that properties behind proofs of Boolean circuit
lower boudns are 2O(n)-constructive. The function f is described by a 2n-bit long string, so 2O(n) time is
polynomial in the description size of the input function f .

Let’s consider restzero first. This property can be tested by a circuit of constant size: The circuit
evaluates f on inputs 0 · · · 00 and 0 · · · 01 and accepts if the outputs are diffeerent.

The property restrand can be tested by circuits of size O(n2n). This circuit accepts if f(x) ̸= f(x′)
for at least a third of all n2n−1 input-pairs x, x′ that differ in exactly one position. This count can be
implemented in size O(n22n).

The balancedrect property is more interesting. It is unclear if this property can be computed by size
2O(n) circuits. A brute-force algorithm would have to check all pairs of sets (X,Y ) with |X| = |Y | = Θ2n/2.

There are about
(

2n

Θ(2n/2)

)2 ≥ 2Ω(2n/2) such pairs of sets. The complexity of this algorithm is exponential

in 2n/2, a far cry from 2O(n).
Now recall how we proved that balancedrect holds for IP . We showed that balancedrect(IP ) is

implied by the fact that the spectral norm of the IP matrix (in ±1 representation) is at most 2n/2. We
can formalize this property by the following predicate:

spectral(f): the ±1 matrix representing f has spectral norm at most K = 2n/2.

Unlike balancedrect, spectral can be computed by a circuit of size 2O(n). This circuit can be derived
from algorithms for calculating (in fact approximating with excellent precision) the spectral norm of a
matrix which are efficient: they run in time polynomial in the matrix dimensions.

Since spectral implies balancedrect, it won’t be as large, so we need to go back and verify that it
holds for most functions. If we introduce some slack in the spectral norm, say by setting K to 10 · 2n/2,
it turns out that this is true: A random ±1 matrix with dimensions 2n × 2n has spectral norm at most
10 · 2n/2 except with probability 2−Ω(n).

For similar reasons, it is unclear if the polyapx property is constructive. In that example the stronger
separating property “f has rational degree at least n/2−

√
n” happens to be both large and constructive.

In summary, all circuit lower bounds that we saw in Lectures 1, 2, and 3 are based on some separating
property that is both large and constructive. Identifying the relevant property among several candidates
may require reworking (in the words of Razborov and Rudich, naturalizing) the proof.

2 Pseudorandom Functions

To explain what a pseudorandom function is, we should say a bit more about (truly) random functions. A
function from {0, 1}n to {0, 1} can be uniquely specified by listing all 2n values F (00 · · · 0), . . . , F (11 · · · 1).
As there are two choices for each value F (x) there are 22

n
possible functions. A random function R is a

random variable whose distribution is uniform over this set of 22
n
possible functions.

A random function R can be chosen by sampling the 2n values R(00 · · · 0), . . . , R(11 · · · 1) as uniform
and independent random bits. This gives a natural implementation of R by a randomized program: The
program first samples and stores 2n random bits. Then on input x it outputs the x-th value in its memory.
In the circuit model, an implementation of a random function {0, 1}2 → {0, 1} might look like this: On
input x1x2 and randomness r1r2r3r4, output

(x1 and x2 and r1) or (x1 and x2 and r2) or (x1 and x2 and r3) or (x1 and x2 and r4).

The size of this implementation scales exponentially in n. Intuitively this should be unavoidable because
any implementation of R must store 2n independent random values r1, . . . r2n . In the circuit model this can
be made precise: Any randomized circuit that implements a random function must have size exponential
in n.1 In fact, any circuit of substantially smaller size must compute a function that is statistically very
far from a truly random function.

1We are talking about stateless implementations: Once the randomness is fixed the function is determined.
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A pseudorandom function is a randomized function P that is “indistinguishable from random” but is
computable by small randomized circuit. What does it mean for a function to be indistinguishable from
random? Since a function is completely described by listing its values, we would like to say that the lists

(P (00 · · · 0), P (00 · · · 1), . . . , P (11 · · · 1)) and (R(00 · · · 0), R(00 · · · 1), . . . , R(11 · · · 1))

are computationally indistinguishable. This and more will be true under the following definition of indis-
tinguishability by oracle circuits.

Definition 3. A randomized function P : {0, 1}n → {0, 1}m is an (S, ε)-pseudorandom function if for every
oracle circuit D of size at most S, Pr[DP = 1] − Pr[DR = 1] is at most ε, where R is a random function
from {0, 1}n → {0, 1}m.

We will use this definition with m = 1, but the generality will be helpful for constructing pseudorandom
functions.

The aim is to implement a pseudorandom function P by an efficient (randomized) circuit C. Recall
that C takes two types of inputs: The input x ∈ {0, 1}n and its internal randomness K ∈ {0, 1}k, which is
called the key of the pseudorandom function. Different values of the key K give rise to different functions
P (x) = PK(x) = C(K,x). The key K ∼ {0, 1}k is chosen at random but it is kept secret from the
distinguisher: The distinguisher can ask to see values PK(x) on inputs x of its choice but it has no
information about the choice of K beyond what it can deduce from these values.

3 The Razborov-Rudich Barrier

Pseudorandom functions P that are computable by circuits of size polynomial in n are believed to exist for
every n. We will next show how such functions can be constructed from sufficiently strong pseudorandom
generators.

On the other hand, if polynomial-size circuits satisfy some property P that is both large and construc-
tive, then they cannot compute pseudorandom functions:

Theorem 4. If no function f : {0, 1}n → {0, 1} in some class C satisfies a property that is (1 − δ)-large
and S-constructive with probability at most δ then C cannot compute (S, 1− δ)-pseudorandom functions.

Proof. Let D be a circuit computing the property. By largeness Pr[DR = 1] ≥ 1− δ. Since no function in
C has the property, Pr[DP = 1] = 0 for all distributions P over functions in C. So

PrF [D
P = 1]− Pr[DR = 1] ≥ 1− δ.

Since the property is computable by size-S circuits S, C cannot compute (S, 1−δ)-pseudorandom functions.

In the next section we show how to construct a (
√
s,
√
sε) pseudorandom function P : {0, 1}n → {0, 1}

from a (s, ε)-pseudorandom generator G : {0, 1}k → {0, 1}2k. If, for example, s = 2k/10 and ε = 2−k/10 we
get a (2k/20, 2−k/20)-pseudorandom function P from a (2k/10, 2−k/10)-pseudorandom generator G. If G is
computable by circuits of size polynomial in k, P will be computable in size polynomial in n as long as n
is polynomial in k. Specifically, by setting say k = 400n we obtain a (220n, 2−20n)-pseudorandom function
P computable by the class C of size-nC circuits (for a suitable constant C).

By Theorem 4, size-nC circuits cannot satisfy any property that is both 220n-constructive and 2−20n-
large, including any of restzero, restrand, spectral, ratdegree. In words, the types of properties that
were useful for obtaining the circuit lower bounds in Lectures 1-3 are ineffective against polynomial-size
circuits (assuming sufficiently strong pseudorandom generators exist).
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4 How to Construct Pseudorandom Functions

A pseudorandom function PK can in particular be viewed as a pseudorandom generator: The seed is the
key K ∈ {0, 1}k and the output can be the list of any say 2k distinct evaluations (PK(x1), . . . , PK(x2k)).
By Definition 3 this is indistinguishable from a uniform random string of length 2k.

It is remarkable that the following converse is also true: Any pseudorandom generator can be used to
implement a pseudorandom function with arbitrarily long inputs. We will show this by induction on the
input length n of the pseudorandom function.

We assume that the generator G : {0, 1}k → {0, 1}ℓ is length-doubling, i.e. ℓ = 2k. This can be achieved
by the stretch-extension procedure from last lecture. Such a generator can be viewed as a pseudorandom
function P1 with one bit of input and k bits of output: The values P (0) and P (1) are the k left bits G0(K)
and the k right bits G1(K) of G respectively, namely

P (b) = Gb(K), b ∈ {0, 1},

providing a base case for the induction.
Now suppose we have constructed a pseudorandom function P with n− 1 bits of input (and k bits of

output). Extending the input of P by one bit amounts to “stretching” the 2n−1 values P (x) to 2n pseudo-
random values P ′(y), where P ′ has n bits of input. This can be done with another another application of
G:

P ′(bx) = Gb(P (x)), x ∈ {0, 1}n−1, b ∈ {0, 1}. (1)

Unwinding this inductive definition gives the following construction for any input length n.

The Goldreich-Goldwasser-Micali (GGM) pseudorandom function:

P (x1x2 . . . xn) = Gx1(Gx2(· · · (Gxn(K) · · · )).

We will prove that P is a pseudorandom function by induction on n. The key is understanding the
effect of transformation (1).

Lemma 5. If P is an (s, q, ε)-pseudorandom function and G is an (s + q(t + O(k)), ε′)-pseudorandom
generator of size t then P ′ is an (s−O((n+ k)q2), q, ε+ qε′)-pseudorandom function.

The additional parameter q here refers to the number of oracle queries that the distinguisher makes:
“(s, q, ε)-indistinguishable” means indistinguishable with advantage at most ε by a circuit of size at most
s that makes at most q oracle queries. The number of queries can never exceed the circuit size, so q is by
default upper bounded by s. This parameter plays an important role in the induction so it will be useful
to track it separately from the size.

For the proof of correctness it is helpful to introduce the following concept. The view of an oracle ciruit
CF is the sequence of values (F (x1), F (x2), . . . , F (xq)) that C receives in response to its queries x1, . . . , xq
issued to F .

To prove that P ′ = Gb◦P is a pseudorandom function we need to compare the view of the distinguisher
D′ interacting with P ′ to the view of D′ interacting with a truly random function R′ : {0, 1}n → {0, 1}k. To
do this we’ll look at the hybrid function Gb ◦R where R : {0, 1}n−1 → {0, 1}k is a truly random function.

Claim 6. If P is (s, q, ε)-pseudorandom then Gb ◦P and Gb ◦R are (s−q(t+O(k)), q, ε)-indistinguishable.

Proof. A distinguisher D that tells Gb ◦ P from Gb ◦R can be turned into a distinguisher D′ that tells P
from R by applying Gb to every query. More precisely, D′ simulates D. Whenever D makes query y = bx
to its oracle, D′ makes query x to its oracle and applies Gb to the answer. The view D′F is identical to
the view DGb◦F for any F , so D has the same distinguishing advantage as D′ on the relevant oracles. The
circuit D has to do all the work that D′ does plus q additional evaluations of G and O(k) extra work to
select the correct half Gb so its size is larger by q(t+O(k)).
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Claim 7. If G is an (s′, ε′)-pseudorandom generator then Gb◦R is an (s′−O((n+k)q2), q, qε′)-pseudorandom
function.

To gain intuition about Claim 7 take n = 2 and consider a distinguisher that queries its oracle F
at 000, 101, and 011. When F = Gb ◦ R, the distinguisher sees the values G0(R(00)), G1(R(01)) and
G0(R(11)). Since R(00), R(01), and R(11) are independent random values this is like seeing (part of) the
output of three independent copies of G, which we would also expect to be pseudorandom. Here is a useful
composition lemma that captures this intuition.

Lemma 8. Let X1, . . . , Xq and Y1, . . . , Yq be independent random variables. If Xi and Yi are (s, ε)-
indistinguishable for every i then (X1, . . . , Xq) and (Y1, . . . , Yq) are (s, qε)-indistinguishable.

Before we do the proof of Claim 7 let’s consider another example. Suppose the distinguisher now queries
its oracle at 000, 101, and 100. The first and third value returned by Gb ◦ R are no longer independent:
They are evaluations of the left and right half of G on the same seed 00. It would be convenient if we could
forbid the distinguisher from making sequences of queries of this type. This can be achieved by forcing
the distinguisher to make the queries in pairs 0x, 1x. If the distinguisher wants to know F (bx), we ask it
to remember both F (0x) and F (1x) for future reference. The view of such a distinguisher will always look
like the sequence

F (0x1), F (1x1), F (0x2), F (1x2), . . . , F (0xq), F (1xq) (2)

with x1, . . . , xq all distinct.

Proof. Assume D distinguishes Gb ◦R from a random function R′. We convert D into a distinguisher D∗

that operates as follows: Whenever D queries its oracle at bx, D∗ checks if it has made this query before
and if so it returns its previous answer. If not, it queries its oracle at both 0x and 1x and uses the relevant
answer. D∗ is larger than D by O((n + k)q2) gates, which is the amount of circuit hardware it takes to
implement the memorization of previous queries and answers.2

The view of D∗ looks like sequence (2). When F = Gb ◦R this is a sequence of q independent outputs
of G, while when F = R′ these are q independent random strings. By Lemma 8, if D∗’s distinguishing
advantage is qε′ then the output of G is not (s′, ε′)-pseudorandom.

To prove Lemma 5 we combine the two claims, setting s′ to s+ q(t+O(k)). We now apply the lemma
inductively. Assume G is an (s + q(t + O(k)), ε′)-pseudorandom generator. When n = 1, by Claim 7 the
function P is (s − O((1 + k)q2), q, qε′)-pseudorandom. Applying Lemma 5 we get that when n = 2, P is
(s − O(1 + 2 + 2k)q2, q, 2qε′)-pseudorandom. Continuing this argument inductively, we conclude that for
general n, P is (s−O(n(n+ k)q2), q, nqε′)-pseudorandom. After renaming parameters we obtain the main
theorem of this lecture.

Theorem 9. If G is an (s, ε)-pseudorandom generator then the GGM function is an (s − qt − O((n(n +
k)q2), q, nqε)-pseudorandom function.

What does this mean? To get a sense let’s ignore the contribution of the terms n, k, t of “polynomial”
magnitude. If we set q to a bit below

√
s then we get that P is about (s,

√
s,
√
sε)-pseudorandom. Since

the number of queries never exceeds circuit size, P is in particular (
√
s,
√
sε)-pseudorandom as promised.

While this level of security is quite reasonable, one weakness of the GGM construction is its efficiency:
To calculate an output of P one needs to make n sequential calls to G. Natural proofs show that this is in
some sense unavoidable: If a function family can be implemented in a parallel model of computation like
bounded-depth circuits with AND/OR and possibly PARITY gates then it cannot be pseudorandom by
Theorem 4.

2In more reasonable models of computations like RAM programs D∗ would be more efficient and the loss in security would
be lower.
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Proof of Lemma 8. To keep the notation simple let’s prove it for q = 2. Assume that some D of size
at most s distinguishes (X1, X2) and (Y1, Y2) with advantage more than 2ε. Then D must distinguish
(X1, X2) and (X1, Y2) or it must distinguish (X1, Y2) and (Y1, Y2) with advantage more than ε. The two
cases are completely analogous so we focus on the first one. The bits X1 can be fixed to the value that
maximizes the advantage of D, giving a distinguisher of size s between X2 and Y2. More formally, if

Pr[D(X1, X2) = 1]− Pr[D(X1, Y2) = 1] > ε

then by averaging
EX1

[
PrX2 [D(X1, X2) = 1]− PrY2 [D(X1, Y2) = 1]

]
> ε

so there must be some particular choice X1 = x1 for which D(x1, ·) distinguishes X2 from Y2.

5 Natural properties and efficient learning

By the equivalence between distinguishing and prediction from the last lecture, the ability to distinguish
a function f from a random one implies the ability to predict f at a previously unseen value. Instead
of proving a general theorem let us illustrate this with an example. Suppose that f is computable by a
small-depth circuit. Then f is very likely to become constant under a (n − 1)-random restriction, that is
f(x) = f(x′) for most pairs of inputs x, x′ that differ in one random coordinate. Thus the value f(x) can
be predicted by querying f(x′) where x′ is obtained by flipping a random coordinate of x.

In contrast, a pseudorandom function cannot be learned, not owing to lack of information, but because
of limitations in computational power. In the model of probably approximately correct (PAC) learning, a
learning algorithm can observe input-output samples of the form (x, f(x)), where f is some efficient but
unknown function. For example, f could be the “circuit of the mind” that takes as input some visual scene
x and outputs 1 if x has a dog in it. The objective of the learning algorithm is, after being trained on some
sequence of samples (x1, f(x1)), . . . , (xq, f(xq)), to make a prediction for f(x) on some previously unseen
sample x.

We can model this learning process as a game in which the following type of learner L interacts with
an unknown concept f :

Training phase:
Query sample x1. Receive example f(x1).
Query sample x2. Receive example f(x2).

...
Query sample xq. Receive example f(xq).

Prediction phase:
Choose test sample x different from x1 up to xq.
Output a prediction y for f(x).

The learner succeeds if y equals f(x). This is an extremely weak notion of learning: Not only does the
learner get to choose which examples to see, but she also chooses what to be tested on (as long as she
doesn’t get to train on the test question itself).

Theorem 10. Assume PK : {0, 1}n → {0, 1} is an (s, q + 1, ε)-pseudorandom function. For every learner
L of size at most s there is a key K such that LPK succeeds with probability at most 1/2 + ε.

In words, no learner can do any better at passing the test than guessing the answer at random. There-
fore, assuming pseudorandom generators exist, it is possible to design efficiently computable functions that
are extremely hard to predict by any learning algorithm. Such functions have many uses in cryptography.
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Proof. We prove the contrapositive. Suppose LPK succeeds with probability 1/2 for every K. Then it
succeeds with this probability for a random K. Let D be a distinguisher that simulates L, making the
same q training queries, but then makes one more query at x and outputs L’s exam grade: 1 if y = f(x)
and 0 if not. The accepting probability of DP then equals the probability that LP succeeds, which is
1/2 + ε. On the other hand, if R is a truly random function, the value R(x) is independent of everything
the learner has seen, so it is independent of his prediction y. The probability that they are equal is exactly
1/2, so DR outputs 1 with probability exactly 1/2. It follows that D distinguishes P and R, so P is not
pseudorandom.
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