
CSI 5138: Computational Complexity Lecture 9
University of Ottawa, Fall 2023

Mathematical proofs are immutable objects: You read the proof, and if it is convincing, you accept
it as correct. Outside mathematics “proofs” may involve interaction. A criminal suspect who wants to
prove their innocence in court is subjected to a cross-examination. What happens in the interaction with
layers affects the decision of the jury. The complexity-theoretic analogue of a cross-examination is called
an interactive proof.

1 Interactive proofs

To explain interactive proofs, let’s go back to our definition of NP. A (promise) decision problem (YES ,NO)
is in NP if there is a polynomial-time verifier V and a polynomial p such that

if x ∈ YES , then there is a y, |y| ≤ p(|x|) such that V (x, y) = 1, and

if x ∈ NO , then for all y, |y| ≤ p(|x|), V (x, y) = 0.

So far we have been thinking of y as a witness or a certificate: This is the satisfying assignment for a
boolean formula, or the perfect matching in a graph. Today we will think of this witness as an object
furnished by an external entity called the prover. Then verification can be viewed as a process: On input
x, the verifier V asks to see a proof that x ∈ YES . The prover tries to provide such a proof. If the
prover is honest, it will always be able to provide a correct proof (provided it exists). The verifier should
be complete, namely recognize such proofs as correct. On the other hand, if the verifier tries to provide a
bogus proof (for instance an assignment a such that ϕ(a) is false) the verifier should be sound and detect
the mistake.

Formally, an NP-prover P is any (computationally unbounded) function that maps inputs x ∈ {0, 1}∗
to proofs y ∈ {0, 1}∗. Then NP is the class of all decision problems for which there exists a TM V (called
a verifier) whose running time is polynomial in the length of x and a computationally unbounded function
P : {0, 1}∗ → {0, 1}∗ (called the honest prover) such that

if x ∈ YES , then V (x, P (x)) = 1

if x ∈ NO , then for all P ∗, V (x, P ∗(x)) = 0.

Now consider the following extension of NP-proofs: After receiving the purported proof, the verifier is
not quite convinced that the prover is correct and asks to see more detail. The prover may then send a
new message to the verifier elaborating on his case. The two keep going back and forth until the verifier
is either convinced that the prover is correct and accepts, or thinks the prover’s argument is bogus and
rejects.

In this setting the prover and verifier are adaptive: The question that the verifier asks at any given
round of interaction may depend on the answers it received from the prover in previous rounds. However,
the prover himself may choose to adapt his answers based on the previous queries made by the verifier.

To formalize it we need to introduce interactive Turing Machines. This is a Turing Machine that, in
addition to its input x, receives additional inputs (y1, z1, . . . , yk, zk) which represent the messages sent and
received in the first k rounds of interaction. Here, y1, . . . , yk are the messages sent by the machine itself,
and z1, . . . , zk are the responses received from the other party. On this input, the machine produces the
next message yk+1 or possibly accepts/rejects.

Given two interactive Turing Machines A and B, the interaction (A,B) on input x consists of the
sequence of messages y1 = A(x), z1 = B(x, y1), y2 = A(x, y1, z1), z2 = B(x, y1, z1, y2), . . . , exchanged
between A and B before A decides to accept or reject. The round complexity is the number of messages
exchanged before A reaches a decision.

1

A (polynomial-time) deterministic interactive proof for a decision problem (YES ,NO) is a pair of Turing
Machines (V, P) where V runs in time polynomial in the input x, and

if x ∈ YES , then (V, P)(x) accepts

if x ∈ NO , then for all P ∗, (V, P ∗)(x) rejects.

The verifier’s messages are called questions, and the prover’s messages are called answers.
This model is at least as powerful as NP, which requires no interaction. Is it more powerful? A thought

experiment shows that it is not, at least in the case when V is deterministic. The reason is that on input
x, the prover can predict in advance which questions the verifier is going to ask, so it can answer all of
them in the first round. Therefore the whole interaction can be emulated by a single prover message, so
the problem decided by the proof system must be in NP.

2 Interaction and randomness

Now let’s allow the verifier to use randomness. It is no more the case that the prover can predict the
verifier’s questions and answer them before they are asked.

Definition 1. A (polynomial-time) interactive proof for (YES ,NO) is a pair of Turing Machines (V, P)
where V is a randomized Turing Machine that runs in time polynomial in the input x, and

if x ∈ YES , Pr[(V, P)(x) accepts] ≥ 2/3

if x ∈ NO , Pr[(V, P ∗)(x) accepts] ≤ 1/3 for all P ∗.

The round complexity of the proof system is the maximum round complexity of the interaction (over the
choice of x and the verifier’s randomness).

As in the definition of BPP here is nothing special about the constants 2/3 and 1/3; any two constants
c > s will do. The gap c − s can be amplified by repetition. If prover and verifier repeat the protocol t
times and verifier outputs the majority of answers, the probabilities are amplified to 1− 2−Ω(t) and 2−Ω(t),
respectively. Sequential repetition would increase the number of rounds by a factor of t. Parallel repetition
is preferable as it preserves the round complexity.

Here is a decision problem that has a two-round interactive proof, but is not (provably) known to be
in NP. Graphs G0 and G1 on n vertices are isomorphic if there exists a permutation π of vertices that,
when applied to G0, outputs exactly G1, namely

(u, v) is an edge of G0 if and only if (π(u), π(v)) is an edge of G1. (1)

GI (graph isomorphism): Given a pair of graphs (G0, G1), are they isomorphic?

There are some natural tests you can try for isomorphism, for example checking that they have the
same number of edges and the same degree sequence (i.e. they have the same number of vertices of any
given degree). G0 and G1 can pass these tests and still be isomorphic. No general polynomial-time test
for isomorphism is known (though in 2016 Babai discovered a quasipolynomial, i.e. nO(logn)-time, test).
Problem GI is in NP because given π, condition (1) can be checked efficiently. In the context of interaction
the complementary problem is more interesting:

GI (graph nonisomorphism): Given a pair of graphs (G0, G1), are they non-isomorphic?

This does not look like an NP problem. How would you convince someone that two graphs are not
isomorphic without going over all candidate n! = nΩ(n) isomorphisms and verifying that they all fail? In
fact GI is not known to be in NP. However it admits the following one-round interactive proof:

2

Interactive proof for graph non-isomorphism

On input (G0, G1):

V: Choose a random i ∈ {0, 1} and a random permutation π on n elements. Create a graph G
by applying π to the vertices of Gi and permuting its edges accordingly (i.e., (π(u), π(v))
is an edge in G iff (u, v) is an edge in Gi). Send G to the prover.

P: Answer 0 if G is isomorphic to G0 and 1 if G is isomorphic to G1.

V: If the prover answered i accept, otherwise reject.

This is an interactive proof for GI for the following reason: If G0 and G1 are not isomorphic, then G is
isomorphic to Gi, so it cannot be isomorphic to the other graph. So the honest prover will always answer
i, and the verifier will always accept. Now assume G0 and G1 are not isomorphic. We have to argue that
no matter what the prover P ∗ answers, V will reject with probability at least 1/2. The key insight is that
when G0 and G1 are isomorphic, the random graph G is (statistically) independent of the random bit i.
Therefore no matter what the prover does, the chances that he guesses the correct value of i is exactly 1/2.

So we have some evidence that interaction helps in proofs. If one-round of interaction is more powerful
than no interaction, how about two rounds? It turns out that any fixed number of additional rounds does
not help:

Theorem 2. For every constant r, if f has an r-round interactive proof, then it has a one-round public-coin
interactive proof.

3 Public-coin Proofs and Pairwise Independence

Let’s first explain what public-coin means. In the graph non-isomorphism proof it is important that the
bit i chosen by the verifier is hidden from the prover: If the prover knew i he could make the verifier accept
with probability 1 even if G0 and G1 were not isomorphic.. This is an example of a private coin protocol:
The soundness of the protocol relies on the fact that the verifier has some private (random) value that the
prover cannot guess.

We can also consider a more restricted kind of protocol, where everything the verifier does is in plain
view of the prover. Without loss of generality, this kind of protocol, called a public coin protocol, works
in the following way: The prover and the verifier get together and flip some random coins. The coin flips
serve as the verifier’s first question. The prover then answers this question, and then they flip some coins
again to come up with the verifier’s second question. And so on until the verifier makes her decision based
on the coin flips and prover’s replies.

This looks like a strange thing to do. How much can the verifier learn by asking random questions?
Here is an example of an interesting (promise) problem that can has a two-round public-coin proof. A
nondeterministic circuit C : {0, 1}n → {0, 1} is a circuit that, in addition to its regular input x ∈ {0, 1}n,
a witness w. We say such a circuit C accepts x (or x is a satisfying assignment of C) if there exists
a w such that C(x,w) = 1. Nondeterministic circuits are to NP what ordinary circuits are to P: Just
like all problems in P admit polynomial-size circuit families, all problems in NP admit nondeterministic
polynomial-size circuit families.

MSAT (many satisfying assignments):
Input: A nondeterministic circuit C and numbers s (in binary) and 1a (in unary),
Yes instances: (C, s) such that C has at least s satisfying assignments.
No instances: (C, s) such that C has at most (1− 1/a)s satisfying assignments.

MSAT is at least as hard as SAT; if we set s = 1 and a = 2, yes and no instances are satisfiable and
unsatisfiable circuits. But if for example s = 2n/2 then it is not known to be in NP. (The natural certificate
would consist of an exponentially long list of assignments.)

3

Theorem 3. MSAT has a two-round public-coin interactive proof.

The proof of this theorem makes use of a non-cryptographic type of a pseudorandom function called
a pairwise-independent hash function. A keyed function H : {0, 1}n → {0, 1}k is pairwise independent if
for any pair of distinct inputs x1 ̸= x2, the pair (H(x1), H(x2)) is a random independent pair of values in
{0, 1}k × {0, 1}k. In other words, H is pseudorandom against any two-query distinguisher.

One example of an efficiently computable pairwise independent hash function with one bit of output
is H(x) = IP (a, x) + b where IP is the inner product mod 2 function, a is a random n-bit string, and
b is a random bit. Each individual output H(x) is a random bit owing to b and every pair of outputs
(H(x1), H(x2)) is uncorrelated because H(x1) + H(x2) = IP (a, x1 + x2) is also a random bit. This is
only possible if H(x1) and H(x2) are independent. To obtain more output bits the construction can be
repeated independently, i.e., H(x) = (IP (a1, x) + b1, . . . , IP (ak, x) + bk). This can be viewed as the F2

matrix-vector product expression H(x) = Ax + b, where A is a random k × n Boolean matrix and b is a
random k-bit Boolean (column) vector.

One reason pairwise independence is important is because it isolates unique elements of large sets:

Lemma 4. Let H : {0, 1}n → {0, 1}k be a pairwise independent hash function. For every subset X of
{0, 1}m of size between 2k−2 and 2k−1, the probability that there is a (unique) x in X such that H(x) = 0
is at least 1/8 (over the choice of H).

Proof. The event “there is a unique x ∈ X such that H(x) = 0” is a disjoint union of the |X| events
“H(x) = 0 and H(x′) ̸= 0 for every x′ ∈ Y − {x}”, one for each x in X. Therefore

Pr[there is a unique x ∈ X with H(x) = 0]

=
∑
x∈X

Pr[H(x) = 0 and H(x′) ̸= 0 for all x′ ∈ X − {x}]

=
∑
x∈X

Pr[H(x′) ̸= 0 for all x′ ∈ X − {x} | H(x) = 0] Pr[H(x) = 0]

=
∑
x∈X

(1− Pr[H(x′) = 0 for some x′ ∈ X − {x} | H(x) = 0]) Pr[H(x) = 0]

≥
∑
x∈X

(
1−

∑
x′∈X−{x}

Pr[H(x′) = 0 | H(x) = 0]

)
Pr[H(x) = 0]

≥ |X| · (1− |X| · 2−k) · 2−k.

Since Y has size between 2k−2 and 2k−1 the last expression is at least (1/4) · (1− 1/2) = 1/8.

To understand Lemma 4 notice that if H was a purely random function then the probability that
H(x) = 0 for some x ∈ X is exactly 1 − (1 − 2−k)|X| ≥ 1 − (1 − 2−k)2

k−2 ≈ 1 − e−1/4 ≈ 0.22. Lemma 4
says that when H is merely pairwise independent this probability is not much smaller.

Proof of Theorem 3. We first show how to do this when 1−1/a is replaced by 1/8. The prover and verifier
choose a random hash function H : {0, 1}n → {0, 1}k, where 2k−2 ≤ s ≤ 2k−1, namely the matrix A and
the vector b. The prover then sends any x,w such that C accepts x with witness w and H(x) = 0. The
verifier checks these two conditions and accepts iff they both hold.

For a no instance, the probability that the verifier can provide an x such that C(x) = 1 and H(x) = 0
is at most the number of satisfying assignments to C times 2−k by a union bound. This is at most
(s/8)2−k ≤ 1/16, so the probability that the prover can choose such an x is less than 1/16.

To do this for larger values of a, the verifier and prover run the above protocol on the circuit

C ′(x1, . . . , x3a) = C(x1) and · · · and C(x3a)

4

with size parameter s3a. If C has at least s satisfying assignments then C ′ has at least s3a satisfying
assignment and the protocol accepts with probability 1/8. If C has fewer than (1 − 1/a)s satisfying
assignments, then C ′ has fewer than (1− 1/a)3as3a ≤ sm/8 satisfying assignments.

Theorem 3 can be used to turn any private-coin protocol into a public-coin one.

Theorem 5 (Goldwasser and Sipser). If f has an r-round interactive proof, then it has a public-coin
interactive proof with at most r + 1 rounds.

We won’t show how to do this in general. Instead here is some intuition about how Theorem 3 can
be used to turn the graph non-isomorphism proof into a public-coin proof. Let us assume that we have
the additional promise the graphs G0 and G1 have no automorphisms. If G0 and G1 are isomorphic, then
there are n! possible first messages sent by the verifier, one for each permutation of the vertices. If they
are not then there are 2 · n! possible messages, n! for permutations of G0 and n! for permutations of G1.
Let C be the nondeterministic circuit that accepts input G if there exists an isomorphism between G and
G0 or between G and G1. Then proving G0 and G1 non-isomorphic amounts to proving that (C, 2n!, 2) is
a yes-instance of MSAT.

4 Round Reduction

Now we sketch how to turn an r-round public-coin interactive proof for any constant r > 2 into a one-round
public-coin proof. This is done iteratively, reducing the number of rounds one by one. In such a protocol,
the verifer starts by asking a random question r1, then the prover answers by some string a1 and the
verifier responds with r2. We will sketch how to flip the order of the second and third round of interaction
without affecting the completeness and soundness of the protocol. The result is a protocol with one less
round.

Let’s assume that each message is k bits long, where k grows at a rate polynomial in the input size.

V P

r1
a1
r2
a2
...

Consider what happens if in the third round of the protocol, the verifier “forks” m independent executions
of it in parallel (we’ll give the value of m later): Namely, instead of asking a single question r2, it asks
m such questions r21, . . . , r2m independently at random. It then expects m answers a21, . . . , a2m from the
prover, and so forth. At the end, it computes m different answers, and accepts if the majority of them are
accepting.

V P

r1
a1

r21
a21
...

r2m
a2m
...

· · ·

To analyze what happens it helps to assume the probability of accepting for the yes instances is at least
8/9 and the probability of rejecting the no instances is at most 1/9. Let’s look at the yes instances first. It
then follows that for at least a 2/3 fraction choices of the first message r1, for the response a1 = P (x, r1)
provided by the honest prover P , the probability that the verifier accepts in the rest of the interaction

5

is at least 2/3. Let’s fix a message r1 with this property. Then by the Chernoff bound the probability
that fewer than half of the parallel interactions accept is at most 2−m/6, so the overall probability that the
verifier accepts is at least 2/3− 2−m/6.

Now let’s look at the no instances. These accept with probability at most 1/9, so there is at least a 2/3
fraction of messages r1 such that for any fixed response a1 by the prover, the rest of the interaction accepts
with probability at most 1/3. Let’s fix a message r1 with this property. Again by the Chernoff bound the
probability that more than half of the forked interactions accept is at most 2−m/6. As there are at most 2k

possible responses a1, by a union bound we get that the probability that there exists a1 that makes fewer
than half of the forked interactions do the right thing is at most 2k−m/6. We choose m = 6k + 19 to make
this probability as small as 1/9.

But now look at what we proved: Regardless of what the prover’s message a1 is, the rest of the protocol
succeeds with probability at most 1/3 + 1/9 = 4/9. So the message a1 can be delayed to come after the
questions r21, . . . , r2m. The order of the second and third message can then be swapped. After this swap
the first two rounds reduce to a single round.

V P

r1
r21 r2m

a1
a21 a2m
...

...

· · ·

· · ·

By repeating this transformation any polynomial-time interactive proof with a constant number of
rounds can be turned into a polynomial-time interactive proof with two rounds and public coins. One last
transformation that we won’t show is one that turns any 1-round interactive proof into one with perfect
completeness (yes-instances are always accepted as in the graph non-isomorphism proof).

Definition 6. The class AM consists of those decision problems that admit a one-round public-coin
interactive proof (V, P) such that

if x ∈ YES , Pr[(V, P)(x) accepts] = 1

if x ∈ NO , Pr[(V, P ∗)(x) accepts] ≤ 1/2 for all P ∗.

So any constant-round interactive proof can be “compiled” into this very special form: The verifier
asks a single random question; for a yes instance, the prover can always make the verifier accept, but for
a no instance, the verifier will reject with high probability.

Applying the simulation of Turing Machines by circuits from Lecture 6, the AM verifier can be efficiently
compiled into a circuit family {Cm} such that

if x ∈ YES , Prr[Cm(x, r, w) accepts for some w] = 1

if x ∈ NO , Prr[Cm(x, r, w) accepts for some w] ≤ 1/2.
(2)

After fixing x, this transformation yields an efficient reduction from any AM problem to MSAT: YES
and NP instances of the AM problem are mapped to nondeterministic circuits that accept all of their
inputs and at most half of their inputs, respectively. As all the other reductions (private to public coins,
round reduction) are also efficient, MSAT is complete for all promise problems that have polynomial-time
constant-round interactive proofs.

Theorem 7. Any f that has a constant-round interactive proof polynomial-time reduces to MSAT (even
if we fix s to equal the number of all possible assignments and a to one).

6

5 Derandomizing interactive proofs

After all these simplifications it is natural to ask if constant-round interactive proofs are really all that much
more powerful than ordinary (non-interactive) proofs. Using amplification as in the proof of Adleman’s
theorem in Lecture 6, the randomness from (2) can be eliminated giving the following consequence:

Theorem 8. Every decision problem in AM has a polynomial-size family of nondeterministic circuits.

So in the circuit model, randomness and a constant number of interaction rounds do not increase the
power of polynomial-size verifiers. For algorithms, we can attempt to replace the randomness of Cm by
the output of a suitable pseudorandom generator. The Nisan-Wigderson generator can itself be used to
derandomize proofs given a sufficiently strong hardness assumption.

Theorem 9. If there is a problem f decidable in time 2O(t) but not decidable by nondeterministic circuits
of size 2δt even on a 1/2+2−δt/2 fraction of uniformly chosen inputs for some δ > 0 then AM = NP, even
for promise problems.

If you buy into the assumption (as most of us complexity theorists do), the conclusion sounds a bit
strange. Think of the example of graph non-isomorphism. We saw a simple interactive method that can
be used to prove any two given graphs are non-isomorphic, but nobody knows if there are short written
proofs of graph non-isomorphism. Theorem 9 gives evidence that such proofs are in fact likely to exist!

One last word of warning: Our discussion here applies only to proof systems whose number of rounds
is constant, that is independent of input size. Proofs of unbounded round complexity are much more
powerful. In particular they can be used to refute the existence of solutions to NP problems, which is the
topic of the next lecture.

References

Interactive proofs were invented independently by Goldreich, Micali, and Wigderson and by Babai, who
only considered public-coin proofs. The MSAT problem was introduced and Theorem 3 was proved by
Goldwasser and Sipser; it also holds when the number of rounds is unbounded. Round reduction was
proved by Babai and Moran. They show, more generally, that the number of rounds can be halved with a
polynomial increase in verifier complexity. Lemma 4 was proved by Valiant and Vazirani.

The derandomization of interactive proofs was first discussed by Klivans and van Melkebeek. The
hardness assumption was simplified and the running time of the derandomization improved in a sequence
of works leading to a general result of Shaltiel and Umans. In 2016 Babai showed that graph isomorphism
and non-isomorphism have quasi-polynomial time algorithms.

7

	Interactive proofs
	Interaction and randomness
	Public-coin Proofs and Pairwise Independence
	Round Reduction
	Derandomizing interactive proofs

