
CSI 5138: Computational Complexity Lecture 10
University of Ottawa, Fall 2023

A refutation of a statement P is a proof of the statement not P . For example, a refutation of “formula
ϕ is satisfiable” is a proof that ϕ is not satisfable. A refutation of “graphs G0 and G1 are isomorphic” is a
proof that G0 and G1 are non-isomorphic.

This lecture is about the existence of efficient (polynomial-time verifiable) refutations for NP problems.
It is believed that no such refutations exist for NP-complete problems like SAT. In the last lecture we say
an interactive refutation for graph isomorphism (i.e. an interactive proof for non-isomorphism). It turns
out that such interactive refutations for any problem can be derived systematically from interactive proofs
for the same problem, provided the proof possesses an additional property called statistical zero-knowledge.

1 Efficient refutations

The class coNP consists of those problems (YES ,NO) such that (NO ,YES ) is in NP. These are the
problems that have short and efficiently checkable refutations. The following are all coNP problems:

SAT: Is boolean formula ϕ unsatisfiable?
PMATCH: Does graph G have no perfect matching?
GI: Are graphs G0 and G1 not isomorphic?

Let us compare the decision problems SAT and SAT. For SAT, given any boolean formula, we can
always provide a short and efficiently checkable proof that the formula is satisfiable: The certificate is
simply the satisfying assignment. But what if the formula is not satisfiable? Do we still expect to have a
proof that this is the case?

Consider, for instance, the formula:

(x1 or x2) and (x1 or x3 or x4) and (x1 or x2) and (x2).

This formula is not satisfiable for the following reason: The clauses (x1 or x2) and (x1 or x2) can only
be simultaneously satisfied if x2 is false, while the clause (x2) requires x2 to be true. So no matter which
assignment we choose, the formula will not be satisfied.

For this specific example we did manage to give a proof that the formula is unsatisfiable. Is it possible
to provide such a proof for every unsatisfiable formula? This is possible if the “certificate” is exponentially
long; an exponentially long certificate can encode a complete record of exhaustive search for solutions,
thereby certifying its failure. However, it is not known whether we can do so with polynomial-time
verifiable certificates of polynomial length in the input size.

Now let’s look at PMATCH: Can we get a certificate that a graph does not have a perfect matching?
Here the answer is yes: Tutte’s theorem says that a graph has no perfect matching if and only if there
exists a subset of vertices S such that after removing S and all its incident edges, the rest of the graph
has more than |S| connected components with an odd number of vertices. So the set of vertices S is a
certificate that the graph has no perfect matching: This set is of size polynomial in the description, and
once we have S the conclusion of Tutte’s theorem can be verified in polynomial time.

There is a more brutal way to certify that a graph has no perfect matching: Run Edmonds’ perfect
matching algorithm on the graph. If the algorithm does not find a perfect matching, we can take this as a
certificate that the perfect matching does not exist (if it did exist, the algorithm would have found it).

These example illustrate the relationship between the classes P, NP, and coNP. In general, if a (promise)
problem (YES ,NO) is in P then (NO ,YES ) is also in P and therefore in NP, so P is a subclass of coNP.
On the other hand, we do not know if SAT is in coNP, giving a potential example of a problem that is in
NP but not in coNP. In fact SAT (or any other NP-complete problem) is hardest to refute within NP: If
SAT can be refuted efficiently then so can all of NP.
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Theorem 1. If SAT ∈ coNP, then NP = coNP.

Proof. We showed that there is a polynomial-time reduction from every NP-search problem to SAT. This
implies that there is a polynomial-time reduction between their decision versions. So for every NP decision
problem (YES ,NO) there is a reduction that maps YES instances to satisfiable formulas and NO instances
to unsatisfiable formulas. If SAT is in coNP then there is an polynomial-time verifier that accepts unsat-
isfiable formulas (with a certificate of unsatisfiability) and rejects satisfiable ones (with any “certificate”).
Therefore there is a polynomial-time verifier for (NO ,YES ), so (YES ,NO) is in coNP.

To summarize, we know for sure that P is in the intersection of NP and coNP, but it appears plausible
that NP and coNP are distinct. Does the intersection of NP and coNP contain problems other than the
ones in P? One potential example is the problem

Does the number n have an odd number of prime factors?

The reason this problem is in both NP and coNP is that there is an efficient algorithm that decides if a
number is prime. To prove that n has an even or odd number of prime factors, the certificate can consist of
the prime factorization of n, and the verifier can check that all the factors given are indeed prime numbers.
An efficient algorithm for this problem is not known.

Another plausible example related to our discussion today is Graph isomorphism: This is a problem that
has both polynomial-time proofs and polynomial-time (interactive) refutations, but no known polynomial-
time algorithms.

2 Statistical Zero-Knowledge

The interactive proof for graph non-isomorphism from the last lecture has one curious property: After
interacting with the prover, the verifier does not learn anything about the graphs G0 and G1 beyond the
fact that the two are not isomorphic. Recall that the verifier chooses a random bit b ∈ {0, 1}, sends a
random graph isomorhphic to Gb to the prover and expects to receive b as an answer. So the verifier
already knows the answer he is going to get (provided the graphs are indeed isomorphic and the prover
follows the rules).

Contrast this with the standard proofs for SAT where the verifier does not merely find out that the
formula is satisfiable, but also learns the satisfying assignment for it. Similarly, in a proof of graph
isomorphism, the verifier learns not only that G0 and G1 are isomorphic, but also the isomorphism ϕ
between the vertices of the two graphs. Is it possible to come up with an alternative proof that hides this
additional information? Here is how to do this interactively for Graph Isomorphism:

Interactive proof for graph isomorphism

On input (G0, G1):

P : Apply a random isomorphism to G0 and send the resulting graph G to the Verifier.

V : Send a random bit b ∼ {0, 1} to the Prover.

P : Send an isomorphism π such that π(Gb) = G.

V : If π(Gb) = G, accept, otherwise reject.

This proof is clearly complete: If G0 and G1 are isomorphic then an isomorphism between Gb and G
will exist regardless of the value of b, so the verifier accepts yes instances with probability one. On the
other hand, the soundness (the probability that the verifier accepts when G0 and G1 are not isomorphic)
is at most half: Regardless of the choice of G, Gb and G fail to be isomorphic with probability at least
1/2 over the choice of b, in which case the verifier rejects. So this is a valid interactive proof for graph
isomorphism.
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Now let’s see what the verifier learns when G0 and G1 are isomorphic (beyond the fact that they are
isomorphic). The verifier observes a graph G obtained by applying a random isomorphism to G0 (or G1)
together with an isomorphism π from Gb to G. This is “information” that the verifier could have generated
on his own in the following way: First choose b and π at random and then set G to equal π(Gb).

Proofs in which the verifier learns nothing beyond the validity of the statement to be proved are called
zero-knowledge proofs. For the general definition we need the following concepts:

• The statistical distance between two random variables X and Y is the maximum possible distinguish-
ing advantage of any computationally unbounded distinguisher.

• The view of interactive Turing Machine A in an interaction with B consists of A’s randomness and
the sequence of messages exchanged between the two.

• A function f is negligible if for every polynomial p and all sufficiently large n, f(n) ≤ p(n).

Definition 2. An interactive proof (V, P ) for promise problem (YES ,NO) is statistical zero-knowledge
if there exists a randomized polynomial-time Turing Machine S called the simulator such that for every
x ∈ YES , the statistical distance between S(x) and the view of V in the interaction with P on input x is
negligible in |x|.

The job of the simulator is to produce a view that is indistinguishable from an actual verifier-prover
interaction efficiently but without access to the all-powerful prover. The best way to understand how
this is at all possible is to describe the simulators in the examples of graph isomorphism and graph non-
isomorphism.

In the proof of graph non-isomorphism, when G0 and G1 are not isomorphic the verifier’s view consists
of a random bit b, a random permutation π, the graph π(Gb) (sent to the prover) and the bit b′ equal to b
(sent by the prover). The simulator outputs (b, π, π(Gb), b), which in this case is identically distributed to
the verifier’s view (i.e., the statistical distance is zero).

In the proof of graph isomorphism, when G0 and G1 are isomorphic the verifier’s view consists of
(G, b, π) where G is a random graph isomoprhic to G0 and b, π are random conditioned on π(Gb) = G.
The simulator outputs (π(Gb), b, π) which is again identically distributed to the verifier’s view. So both
examples satisfy our definition of statistical zero-knowledge.

The class SZK consists of all (promise) problems that have statistical zero-knowledge interactive proofs,
without limitation on the number of rounds. So graph isomorphism and graph non-isomorphism are both
in SZK. Just like NP and AM, SZK has a “canonical” complete problem that we describe next.

3 Statistical difference

A sampler is a circuit C : {0, 1}m → {0, 1}n that takes a uniformly random input r and outputs a sample
C(r) ∈ {0, 1}n. The statistical distance between two samplers C0 and C1 with outputs in {0, 1}n is the
statistical distance between their output distributions. We consider the following promise problem:

SD (statistical difference):
Input: Two samplers C0 and C1.
Yes instances: The statistical distance between C0 and C1 is at least 2/3.
No instances: The statistical distance between C0 and C1 is at most 1/3.

We argue that SD has a statistical zero-knowledge proof. First, we show that this is the case when
the quantities 2/3 and 1/3 are replaced by 1− ε and 1/3, where ε is some negligible function of the input
length (the sizes of C0 and C1). We then describe a reduction that implements this change of parameters.

The proof for statistical difference is similar to the one of graph non-isomorphism:
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Interactive proof for statistical difference

On input (C0, C1):

V : Choose random b ∼ {0, 1}, random r ∼ {0, 1}m and send y = Cb(r) to the prover.

P : Send b′ = D(y), where D is the best possible distinguisher between C1 and C0, i.e., one
that maximizes the advantage Prr[D(C1(r)) accepts]− Prr[D(C0(r)) accepts].

V : If b′ = b, accept, otherwise reject.

If (C0, C1) is a yes instance of SD then Prr[D(C1(r)) accepts]−Prr[D(C0(r)) accepts] ≥ 1− ε, so both
the events “D(C1(r)) rejects” and “D(C0(r)) accepts” have probability at most ε. Regardless of the choice
of b, the prover makes a mistake with probability at most ε. To analyze no instances we use the following
characterization of statistical distance.

Lemma 3. The statistical distance between X and Y is δ if and only if there exists a joint distribution
(X,Y ) and an event E of probability 1− δ such that (a) X and Y are identically distributed given E; (b)
X and Y are disjoint given not E.

When the statistical distance between X and Y is zero, X and Y are identically distributed as in case
(a). When it is one they are disjoint as in case (b). The lemma says that all other distances can be
represented as a “combination” of these two cases.

If (C0, C1) is a no instance of SD then the verifier’s first message can equivalently be described like
this: The verifier samples b ∼ {0, 1} and (Y0, Y1) from the joint distribution on the outputs Y0, Y1 of C0, C1

from Lemma 3 then sends Yb to the prover. Conditioned on E, Yb and b are independent (since Y0, Y1 are
conditionally identically distributed, Yb carries no information about b) and so are b′ and b. The prover
then suceeds with probability exactly half. The overall accepting probability of the prover is then at most
1
2 Pr[E] + Pr[not E] ≤ 1

2 ·
2
3 +

1
3 = 2

3 . Therefore the described proof accepts yes instances with probability
at least 1− ϵ and no instances with probability at most 2/3.

It remains to argue that the proof is statistical zero-knowledge. If (C0, C1) is a yes instance, the verifier’s
view consists of b, r, Cb(r), and b′. The simulator outputs b, r, Cb(r), and b. Since b′ = b with probability
1 − ε, there is a joint distribution under which the two views are identically distributed with probability
1 − ε. By the other direction of Lemma 3, the statistical distance between the two views is at most ε,
therefore negligible in the input size.

Amplification of Statistical Difference

We now show how to enlarge the statistical distance gap between yes instances and no instances from
2/3 versus 1/3 to 1 − exp(s−Ω(1)) versus 1/3, where s is the instance size. We will apply two different
transformations given in the next two lemmas.

Lemma 4. Given two random variables Y0 and Y1, let Y
′
0 and Y ′

1 consists of two independent samples of
Ya and Yb where a and b are random bits conditioned on a ⊕ b = 0 and a ⊕ b = 1, respectively. Then the
statistical distance between Y ′

0 and Y ′
1 is the square of the statistical distance between Y0 and Y1.

Proof. Let D′ be a candidate distinguisher between Y ′
1 and Y ′

0 with advantage δ′. The probability that
D′(Ya, Yb) predicts a⊕ b equals

Pr[D′(Ya, Yb) = a⊕ b] =
1

2
Pr[D′(Y ′

1) = 1] +
1

2
Pr[D′(Y ′

0) = 0]

=
1

2
Pr[D′(Y ′

1) = 1] +
1

2
(1− Pr[D′(Y ′

0) = 1])

=
1 + δ′

2
.
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Therefore it is sufficient to show that if the statistical distance between Y0 and Y1 is δ, the best predictor of
a⊕ b from Ya, Yb has advantage (1+ δ2)/2. By Lemma 3 there exist independent events A,B of probability
1− δ each such that Ya is independent of a given A and Yb is independent of b given B. If either of A,B
happens then (Ya, Yb) is independent of a⊕ b and the advantage of any predictor is exactly half. If neither
happens then Ya determines a and Yb determines b so a⊕ b can be predicted with conditional probability
1. The maximum prediction advantage is therefore (1− δ2) · 1

2 + δ2 · 1 = (1 + δ2)/2 as desired.

Lemma 5. Let Y ′
0 and Y ′

1 consist of k independent copies of Y0 and Y1, respectively. If the statistical
distance between Y0 and Y1 is δ then the statistical distance between Y ′

0 and Y ′
1 is at most kδ and at least

1− 2 exp(−kδ2/2).

Proof. By Lemma 3 Y0 and Y1 are identically distributed with probability 1 − δ. The probability that
all k samples are identically distributed is then at least 1 − (1 − δ)k = 1 − kδ. For the other inequality,
if D is the best distinguisher between Y1 and Y0, i.e., Pr[D(Y1) accepts] − Pr[D(Y0) accepts] ≥ δ and
(Pr[D(Y1) accepts] + Pr[D(Y0) accepts])/2 = p then by a Chernoff bound the probability that at least kp
of the copies of Yb are accepted by D is at least 1− exp(−kδ2/2) if b = 1 and at most exp(−kδ2/2) if b = 0.
So the two distribution can be distinguished with advantage at least 1− 2 exp(−kδ2/2).

Given samplers C0 and C1 of size s, Lemma 4 produces samplers of size 2s + O(1) whose statistical
distance is the square of the original one. If we apply this lemma log ℓ times, we obtain samplers (C ′

0, C
′
1)

of size O(ℓs) whose statistical distance is at least (2/3)ℓ for yes instances (C0, C1) and at most (1/3)ℓ for
no instances. Now applying Lemma 5 with k = 3ℓ−1 to C ′

0 and C ′
1 we end up with a pair of samplers of

size O(ℓ3ℓs) whose statistical distance is at most 1/3 for no instances and at least

1− 2 exp(−k(2/3)2ℓ/2) ≥ 1− exp(−(4/3)ℓ/6)

for yes instances. Choosing ℓ = log s gives a polynomial-time reduction with a negligible error for yes
instances as desired.

4 Completeness of Statistical Difference

The complement SD of SD is hard for statistical zero-knowledge, namely:

Theorem 6. For every promise problem (YES ,NO) in SZK there is a polynomial-time reduction that on
input x outputs a pair of samplers C0, C1 such that

If x ∈ YES , then C0 and C1 have statistical distance at most 1/3,

If x ∈ NO , then C0 and C1 have statistical distance at least 2/3.

Corollary 7 (Okamoto’s Theorem). If a promise problem (YES ,NO) is in SZK then its complement
(NO ,YES ) is also in SZK.

Proof. By Theorem 6, (YES ,NO) reduces to SD. Therefore (NO ,YES ) reduces to SD. In the last section
we argued that SD is in SZK. As SZK is closed under polynomial-time reductions (completeness, soundness,
and zero-knowledge are all preserved), (NO ,YES ) is also in SZK.

In particular, SD itself is in statistical zero-knowledge. By reversing the role of the yes and no instances
we also obtain that SD is complete for SZK. Since SD has a two-round interactive proof (which happens to
be zero-knowledge) it is in AM. Combining all these observations we get the complexity class containment

SZK ⊆ AM ∩ coAM

where coAM is the class of problems (NO ,YES ) such that (YES ,NO) is in AM. One consequence is that it
is unlikely that SAT (or any NP-complete problem) has statistical zero-knowledge proofs because it would
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Figure 1: Complexity class containments and reductions. Under plausible derandomization assumptions
BPP = P, AM = NP, and SAT and MSAT are equivalent (both NP-complete).

then have efficient refutations. Together with the results from last lecture we obtain the “complexity map”
in Figure 1.

Before we sketch the proof of Theorem 6 let us explain how a restricted variant of graph non-isomorphism
reduces to SD. As in the example we gave in the last lecture, we will work under the promise that G0 and
G1 have no automorphisms. We want a reduction that maps pairs of graphs (G0, G1) to pairs of circuits
(C0, C1) so that if G0 and G1 are not isomorphic then C0 and C1 are statistically close, while if G0 and G1

are isomorphic then C0 and C1 should be statistically far.
Let us consider the distribution X = π(Gb) where π is a random isomorphism and b is a random bit. If

there are no automorphisms, and n is the number of vertices, then X is a flat distribution over a set of size
2n! when G0 and G1 are not isomorphic and 2n! when they are. If we take a sequence of six independent
copies of X, the resulting distribution X6 is also flat over support size 26(n!)6 and (n!)6 for yes and no
instances respectively. We now apply the following lemma to X6:

Lemma 8. Let Z be a random variable taking values in {0, 1}n. If Z is a flat distribution over a set of
size at least 2m and H : {0, 1}n → {0, 1}m−2ℓ is a pairwise-independent hash function then the statistical
distance between (H,H(Z)) and (H,U) is at most 2−ℓ, where U is a uniform random variable independent
of H.

We apply Lemma 8 to Z = X6 with 2m = 26(n!)6 and ℓ = 2. If G0 and G1 are not isomorphic
by Lemma 8 the statistical distance between (H,H(Xk)) and (H,U) is at most 1/4. If G0 and G1 are
isomorphic then for every H there are at most (n!)6 possible outputs for H(Xk) given H and 4(n!)6 possible
outputs for U . If D is the distinguisher that accepts the possible outputs of the form (H,H(Xk)) and only
those, then D accepts (H,H(Xk)) with probability one and (H,U) with probability at most 1/4, so the
statistical distance is at least 3/4.

Proof sketch of Theorem 6 The first step in the proof of Theorem 6 is a transformation of the
statistical zero-knowledge proof for (YES ,NO) into one in which the verifier uses public coins, like the one
for graph isomorphism. We will not show this part of the proof and will assume that each verifier message
consists of a sequence of public coins.

We will assume that the completeness and soundness gaps of the proof system are negligible. This can
be arranged by repeating the proof independently several times. Assume the verifier goes first and the
interaction terminates within r(n) rounds on size-n inputs. Finally, we will modify the constants in the
definition of SD from 1/3 and 2/3 to 1/3r(n) and negligible. These can be amplified to 1/3 and 2/3 using
Lemma 5.
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S1(x)

S1(x)

S2(x)

S2(x)

H0 = S(x)

r1

a1 ∼ S1(x) | r1
q2 ∼ S2(x) | r1, a1

a2 ∼ S2(x) | r1, a1, q2

H1

r1

a1 ∼ S1(x) | r1
r2

a2 ∼ S2(x) | r1, a1, r2

H2 = T (x)

Figure 2: The distributions S(x) and T (x) and the hybrid H1 when r = 2. The shaded part represents
that output of S(x) conditioned on the first 2i − 1 messages being sampled as in T (x). Si and Si denote
the i-th question and answer output by the simulator, respectively.

On input x of (YES ,NO), the output distributions of C0 and C1 will consists of two parts. The first
part is a single bit: In C0 first the verifier’s view is sampled from S(x) then the verifier’s decision given
this view is output. In C1 this bit is always 1 (accept).

The second part is a partial interaction sampled independently as follows: In both C0 and C1 a random
number I between 0 and r(|x|) − 1 is chosen. In C0, the first 2I + 1 messages S(x) of the simulator
are output. In C1, the first 2I messages of S(x) are output followed by an independent random string
corresponding to the next message of the verifier. To summarize:

C0 samples (V ’s output in S(x), first 2I + 1 messages of S(x)),
C1 samples (1, first I rounds of S(x) followed by an independent random question).

We show that if x is a yes instance then C0 and C1 are statistically close. First, the verifier must
almost always accept the view provided by S(x): The verifier accepts with probability close to 1 and
the simulator’s output must be indistinguishable by the zero-knowledge requirement. So the first bit is
almost always 1 in both distributions. For the second part, by the zero-knowledge property for every i the
first 2i + 1 messages of the simulator are ε-close to the same messages in the actual interaction for some
negligible ε. In the actual interaction, these consist of the first 2i messages followed by an independent
random question asked by the verifier. Applying zero-knowledge again, they are therefore 2ε-close to the
first 2i messages of the interaction followed by a random verifier message. We conclude that both parts of
C0 and C1 are within negligible statistical distance.

Now suppose x is a no instance. Consider the following distribution T (x) of verifier’s views: First the
verifier asks a random question r1. Then the prover samples an answer a1 by running S(x) conditioned
on the first message of S(x) being equal to r1. Then the verifier answers a random question r2. Then the
prover samples an answer a2 by running S(x) conditioned on the first three messages being equal to r1,
a1, and r2 respectively, and so on. We consider two cases.

If the statistical distance between S(x) and T (x) is at most 1/3 then the verifier rejects the view
S(x) with probability at least 1/2 because T (x) represents an actual interaction between a verifier and a
prover, so the probability that the verifier accepts this interaction is negligible. By statistical closeness,
the probability that the verifier accepts S(x) can be at most 1/2. Then the first bit of C0 is one with
probability at most 1/2, so the first bit distinguishes C0 and C1 with advantage at least half.

If, on the other hand, the statistical distance between S(x) and T (x) exceeds 1/3 we claim that the
statistical distance between the second part of C0 and C1 is at least 1/3r, where r = r(|x|). To see this
consider the following hybrid distributions H0, . . . ,Hr: In distribution Hi the first i rounds are sampled
as in T (x), but the remaining rounds are sampled from S(x) conditioned on these first 2i messages.
Equivalently, the first 2i − 1 messages are sampled as in T (x) and the remaining messages are sampled
from S(x) conditioned on them (see Figure 2).

Then H0 = S(x) and Hr = T (x), so the statistical distance between H0 and Hr is at least 1/3. It
follows that for a random I, the statistical distance between HI−1 and HI is at least 1/3r. This remains
true if we truncate HI−1 and HI after the first 2I − 1 messages because the remaining rounds are sampled
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from the same conditional distribution (and postprocessing cannot increase statistical distance). But then
HI−1 and HI become identical to the second part of C0 and C1 so the statistical distance between these
two is at least 1/3r.
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