
CSI 5138: Computational Complexity Lecture 11
University of Ottawa, Fall 2023

In the last lecture we talked about problems that have efficiently verifiable proofs and refutations but
no efficient algorithms, that is problems in NP∩coNP\P. We saw a few examples of such problems (graph
isomorphism, odd number of prime factors, statistical difference) and a general method for turning proofs
into (interactive) refutations: the statistical zero-knowledge property.

Refutations are interesting for at least two reasons. First, every algorithm is also a refutation (e.g.
Edmonds’ algorithm certifies that a graph does not have a perfect matching), so designing a refutation is a
prerequisite for designing an algorithm. This perspective is common in approximation algorithms for NP
problems, where the first step usually consists of identifying certificate for no instances. For example, it
can be shown that if a graph has no vertex cover (a subset of vertices that touches all the edges) of size s
then it must have a matching (a set of pairwise disjoint edges) of size more than s/2. Thus the existence
of a large matching refutes the existence of a small vertex cover.

The other motivation for studying refutations comes from cryptography. For reasons that are not
completely understood, security of public-key encryption schemes is usually based on problems that are
conjectured to live in NP ∩ coNP \ P. Here is a non-rigorous justification. Suppose we compare the
(randomized) encryptions of two messages, let’s call them 0 and 1. The security requirement is that an
adversary should not be able to distinguish the two, so in particular to decide the promise problem whose
YES instances are encryptions of 1 and NO instances are encryptions of 0. Therefore this promise problem
(Y ES,NO) should not be in P. On the other hand, the owner of the secret key can tell the two apart
efficiently; this is what it means to decrypt. Therefore the secret key is a “certificate” for both the claims
“this ciphertext decrypts to 1” and “this ciphertext decrypts to 0”, that is it can be used to certify both
YES and NO instances, suggesting that (Y ES,NO) is in NP ∩ coNP.

In summary, identifying new problems in NP ∩ coNP \ P is of interest to both algorithms and cryp-
tography. Unfortunately there are not so many plausible candidates. One potential avenue of progress
is to relax the requirement that refutations are sound in the worst-case (e.g. require the prover to be
sound for every possible pair of non-isomorphic graphs) and allow for an incorrect answer with some small
probability over the choice of the instance.

1 Errorless and error-prone heuristics

An average-case algorithm for a computational problem is an algorithm that typically succeeds when the
instance is chosen at random from some fixed distribution. Two important choices need to be made when
defining what it means for an algorithm to typically succeed. The first choice has to do with the fraction
of instances on which the algorithm gives the correct answer. In lecture 7 we defined a predictor to be
an average-case decision algorithm that has a slightly better-than-random chance of guessing the correct
answer. At the other extreme we could require the algorithm to be correct on almost all the inputs.

Unlike the error probability of randomized algorithms, the fraction of inputs on which an efficient algo-
rithm succeeds cannot in general be amplified, so it has to be specified as part of the problem description.
In this lecture we will be mainly interested in average-case algorithms that almost always succeed. To be
specific let’s fix the fraction of instances on which the algorithm is allowed to fail to 1%.

The second choice has to do with the required behavior of the algorithm on those instances that it fails
to solve. To illustrate this point let’s consider the problem of deciding whether a random graph G on n
vertices has a clique of size k. The distribution is the Erdős-Rényi model in which each of the

(
n
2

)
pairs of

vertices forms an edge independently with probability half. The expected number of size-k cliques in G is(
n
k

)
2−(

k
2) (this is the expected sum of the “clique indicators” for each of the

(
n
k

)
potential cliques). Setting

k = log n and using the approximation log
(
n
k

)
= k(log n/k+Θ(1)) we get that there are Θ(n0.5 logn) cliques

of size log n in expectation. A more elaborate second moment calculations shows that G will contain at

1

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

least one clique of size log n with high probability (more than 99%).
An algorithm that accepts every single graph G (outputs yes on every input) will therefore be correct

more than 99% of the time. This algorithm is an example of a heuristic: In the rare cases when G doesn’t
have a (log n)-size clique the algorithm will be incorrect. In other words, the algorithm’s claim that G
doesn’t have a clique is not supported by concrete evidence for this specific G. An average-case algorithm
that not only decides most inputs correctly but also certifies the correctness of its answer is called an
errorless heuristic.

Definition 1. Let (Y ES,NO) be a decision problem and X be a distribution on instances supported on
Y ES ∪NO of length n. An errorless heuristic for (Y ES,NO) with respect to X is an algorithm A that
outputs one of the three values “yes”, “no”, and “I don’t know” such that

1. A is never wrong: event “x ∈ Y ES and A(X) says no or X ∈ NO and A(X) says yes” never happens

2. A(X) says “I don’t know” with probability at most 1% over the choice of X.

Heuristics trivially exist in the regime where most of the instances of the problem are YES instances
as when deciding whether a random n-vertex graph has a (log n)-size clique. It turns out that there is also
an errorless heuristic for deciding if a graph has say a (0.99 log n)-size clique. The algorithm tries to grow
a clique by attaching an arbitrary vertex v to a clique recursively constructed on the set of its neighbors.
In a random n-vertex graph v will have (n−1)/2 neighbors in expectation, so each step roughly halves the
size of the problem resulting in a clique of size about log n. This argument can be made rigorous to prove
that the result is a clique of size at least (0.99 log n) with high probability over the choice of graph. If the
algorithm finds such a clique it answers yes. Otherwise it answers I don’t know. This algorithm is clearly
never wrong (it only answers yes when it has seen a clique) and answers I don’t know rarely, satisfying
both requirements of an errorless heuristic.

When the size of the clique k is between 1.01 log n and 1.99 log n, most graphs still have a k-clique,
but no efficient errorless heuristics for k-clique are known. When k is larger than 2.01 log n the expected
number of k-cliques tends to zero, so most graphs won’t have a k-clique. Now a heuristic that answers
“no” without looking at the graph will be correct most of the time. Is possible to efficiently decide the
coNP property “G has no k-clique” for most G?

It turns out that there is an errorless heuristic for refuting the existence of a k-cliques in a random
graph when k ≥ 10

√
n. Let A be the adjacency matrix of G with the convention that edges and non-edges

are represented by the values 1 and −1, respectively, and the diagonal entries are all ones. Had G contained
a size-k clique the spectral norm of A would have been at least k because vTAv = k∥v∥2 where v is the
indicator vector of the clique. It is however known that a random symmetric ±1 matrix distributed like
A has spectral norm at most 10

√
n with high probability. Thus the algorithm that says no if the spectral

norm of A is at most 10
√
n and “I don’t know” otherwise is an errorless heuristic or k-clique in this regime.

As illustrated by this example, errorless heuristics are in general harder to obtain than error-prone
heuristics, and there are specific examples of NP and coNP problems like deciding the existence of a size-
k-clique in a random graph for suitable choices of k where a trivial heuristic that doesn’t even look at its
input works, but no efficient errorless heuristic is known. If P were to equal NP then all NP (and coNP)
problems would have worst-case algorithms which are in particular errorless heuristics that never say “I
don’t know”. Thus P ̸= NP is a necessary assumption for the existence of NP problems that do not admit
efficient errorless heuristics. One of the central open problems in average-case complexity is whether it is
also sufficient.

There weren’t too many interesting things to say about this question until Shuichi Hirahara made
a breakthrough in 2017. To understand the significance of his work it will help to take a detour into
a connection between random refutation and Probably Approximately Correct (PAC) learning that was
discovered by Daniely, Linial, and Shalev-Schwartz a few years before.

2

https://eccc.weizmann.ac.il/report/2018/138/
https://eccc.weizmann.ac.il/report/2018/138/

2 Random refutation and hardness of PAC learning

The main task in PAC learning is to predict the value of an unknown function f(x) on a random input
x given examples of the form (x1, f(x1)), . . . , (xm, f(xm)) where x1, . . . , xm are chosen independently at
random from some distribution D. For example, suppose after seeing the examples (5, 10), (19, 38), (17, 34)
you are asked to predict the ? in (8, ?). Here the samples are consistent with the function f(x) = 2x and
most of us would predict 16.

To make sense of PAC learning we must impose some limitation on f . As we discussed in Lecture 8, if
f was a random function then it would be impossible to predict even after seeing any number of examples.
In PAC learning f is required to be chosen from some hypothesis class F of “reasonable” functions. The
fundamental theorem of PAC learning says that, assuming f is Boolean-valued, f(x) can then be predicted,
say with 99% accuracy, given m = O(log|F|) random examples. Formally,

Definition 2. Let F be a class of Boolean-valued functions over the same input domain and D be a
distribution on inputs. Algorithm L PAC-learns F with respect to distribution D from m examples with
error at most ϵ if for every f ∈ F , on inputs (x1, f(x1)), . . . , (xm, f(xm)) and x, L outputs f(x) with
probability 1− ϵ, where x1, . . . , xm and x are chosen independently from D.

Theorem 3 (Fundamental theorem of PAC learning). For every F and D and m = O((log|F|/ϵ2) there
exists an algorithm L that PAC learns F with respect to D from m examples with error at most ϵ.

Even if all functions in F have small (some fixed polynomial-size circuits) L may not be efficient: In
Lecture 8 we showed that any efficiently computable family F of pseudorandom functions cannot be learned
even if L itself gets to choose the training data x1, . . . , xm and the test x. However we also saw in that
lecture that pseudorandom functions cannot be too simple, for example computable by polynomial-size
constant-depth circuits because circuit lower bounds for that class are natural.

This leaves open the possibility that if F is a simple enough class of functions then it can be PAC learned
efficiently. One important definitional choice for efficient PAC learning has to do with the distribution D. A
distribution-specific learner only needs to learn with respect to a specific distribution D of interest like the
uniform distribution. In contrast, a distribution-free PAC learner is required to work for all distributions.
One advantage of the distribution-free definition is that it allows boosting : If there is an efficient learner
L with error (1 − ϵ)/2 (i.e. one that merely predicts a bit better than random) then there is an efficient
learner L′ with error at most δ with running time polynomial in the running time of L, 1/ϵ, and log 1/δ.

There are few classes of functions that can be distribution-free PAC-learned efficiently. One is the class
of perceptrons, that is functions f : {0, 1}n → {0, 1} of the form f(x) = sign(w0 + w1x1 + · · ·+ wnxn) for
some real-valued weights w0, . . . , wn. Small decision trees can almost be PAC-learned efficiently; the best
known learner for size-s decision trees on n inputs takes time nO(log s). In contrast, DNF formulas cannot
be PAC-learned efficiently assuming random k-SAT formulas do not admit efficient errorless heuristics:

Theorem 4. Assume that for every polynomial t there exists a constant k so that no algorithm running
in time t(n) is an errorless heuristic for a random k-SAT formula with n variables and t(n) clauses. Then
DNFs cannot be distribution-free PAC-learned in polynomial time.

The complexity of random kSAT To understand this theorem we need to talk about the average-case
complexity of random k-SAT. To be specific let’s take k = 3. A random 3SAT instance is a 3CNF on n
variables in which every clause is chosen independently at random from the following distribution: Choose
the three variables uniformly at random among all

(
n
3

)
possibilities. Then independently decide whether

to negate each of the variables.
A calculation similar to the one we did for k-clique shows that the expected number of satisfying as-

signments for a random 3SAT instance is 2n ·(7/8)m. When m > 6n this number goes to zero exponentially
fast, so most 3SAT instances will be unsatisfiable. For general k most instances become unsatisfiable as
soon as m exceeds 2kn. This is the relevant regime for Theorem 4.

3

An errorless heuristic for 3SAT in this regime needs to be certain that the input formula is unsatisfiable
before saying so. As for k-clique this problem becomes easier as m becomes larger. For example, as m
approaches n3 we might expect to see all 8 possible clauses with the same literals xi, xj , xk and different
negation patterns. An algorithm that looks for such structures would be an errorless heuristic for 3SAT in
this regime.

The best known efficient errorless heuristic for random 3SAT kicks in when m is about n1.5. When m
is between 6n and a bit less than n1.5 most 3CNFs are unsatisfiable but no efficient errorless heuristics are
known. In 2008 Feige, Kim, and Ofek proposed an efficient nondeterministic errorless heuristic that works
assuming m is larger than about n1.4. Their algorithm cannot efficiently certify unsatisfiability on its own,
but it can do so for most 3CNFs when provided with a short certificate w. In contrast, no “certificate”
can make the algorithm falsely claim that a satisfiable 3CNF is not.

For general k, no polynomial-time errorless heuristic algorithm for certifying unsatisfiability are known
when m is between 2kn and about nk/2. I don’t know what the status is for nondeterministic algorithms
but it is seems reasonable to conjecture that efficient errorless heuristics do not exist unless m > nck for
some constant c. This is consistent with the assumption in Theorem 4.

Proof sketch of Theorem 4 As usual we will prove the contrapositive, namely we will show how to
use a learner for DNF to refute random kCNFs. To implement this we need to represent a refutation
problem as a PAC learning problem Π. It will be helpful to imagine that the input kCNF ϕ is provided
in a streaming fashion. There is a “input read” button that when pushed for the first time outputs the
first m clauses of ϕ, when pushed the second time outputs the next m clauses of ϕ, and so on. The clauses
output at the i-th push of the button are represented by a kCNF ϕi so that ϕ = ϕ1 and ϕ2 and · · · .

In the initial learning problem Π the kCNFs ϕi will play the role of examples and the function fx to
be learned will be indexed by an assignment x. The value fx(ϕ) is the evaluation of ϕ at x, that is true
if x satisfies ϕ and false otherwise. To generate examples for Π, in addition to the input ϕ, we sample an
auxiliary random k-CNF ρ with its own read button. Each example (ψi, yi) is sampled as follows: With
probability 1/2, ψi is generated by pushing the read button for ϕ and setting yi to one. With the remaining
probability, it is generated by pushing the read button for ρ and setting yi to zero.

If ϕ has a satisfying assignment x and m is sufficiently large (m = 3k log t(n) suffices), then with
high probability all labels yi will equal fx(ψi) = ψi(x): Whenever the read-ϕ button is pushed this is
true because x must satisfy the part ψi that was output. Whenever read-ρ is pushed, x satisfies ψi with
probability (1− 2−k)m < 1/10t(n) because ψi is a random m-clause k-CNF. By a union bound, with high
probability ψi(x) = 0 for all ψi obtained by a read-ρ push.

If, on the other hand ϕ is a random kCNF, then the label yi is a random bit that is independent of ψi:
ϕ and ρ are identically distributed so yi gives no information about which button was pushed. In summary,
we have a reduction with the following properties: If ϕ is satisfiable, then yi equals fx(ψi) = ψi(x) for all i;
if ϕ is random, then yi is independent of ψi for all i. A distribution-free PAC learner for Π can distinguish
between these two cases.

Lemma 5. Assume there exists an efficient distribution-free PAC learner L for Π (with error 1/10). Then
there exists an efficient (randomized) distinguisher that accepts all sufficiently long sequences of distinct
items of the form (ψi, fx(ψi)) with probability at least 99% and rejects sequences of the form (ψi, bi) where
b1, b2, . . . are independent random bits with probability at least 99%.

Proof. Suppose the learner requires ℓ examples and the sequence consists of 3ℓ items (ψ1, y1), . . . , (ψ3ℓ, y3ℓ).
The learner is provided a random training sample of the items (chosen with repetition) and challenged on
a random item ψI . If the learner’s prediction matches yi the distinguisher accepts and otherwise it rejects.
When yi = fx(ψi) the learner sees correctly labeled independent examples so it will output the correct
prediction fx(ψI) with probability 9/10. On the other hand, when yi are independent random bits the
learner has no information about the value of yI unless item I was included in the training sample. This
happens with probability at most ℓ/3ℓ = 1/3. Overall yI is predicted correctly with probability at most

4

1/3 + 1/2 · 2/3 = 2/3. By repeating independently over fresh data a few times the success probability
becomes 99%.

Therefore if Π can be learned then it is possible to efficiently distinguish 99% of random kCNFs from
100% of satisfiable ones, which is precisely the job of a (randomized) errorless heuristic. But Π is a
strange learning problem in which the examples ψ1, ψ2, . . . are CNFs and the concept to be learned is an
assignment. To finish the proof of Theorem 4 we want to reduce Π to the more natural problem of PAC
learning a DNF g given training data in the form of assignments x and labels g(x).

This reduction can be implemented in three stages. First, learning CNF is reduced to learning DNF
by negating both the examples and labels, i.e (ψi, yi) is mapped to (not ψi,not yi) and the learner’s
prediction is also negated. Second, learning DNF is reduced to learning monotone DNF, namely DNF
without negated literals. This is accomplished by replacing every negated variable xi by a new variable x∗i
and extending the hidden assignment x so that every new variable x∗i is assigned the value not xi.

At this point we have an instance whose examples are monotone DNFs ψ and labels are evaluations
fx(ψ) = ψ(x). Represent the DNF ψ by an m × n Boolean matrix whose (j, i)-th entry ψji indicates the
presence of variable xi in the j-th term of ψ. Checking whether x satisfies ψ amounts to verifying that
when the columns indexed by zero-entries of x are dropped this matrix has an all-ones row, namely

x satisfies ψ if and only if ORj ANDi : xi=1ψji

which is a DNF in the matrix representation of ψ! In summary the evaluation fx(ψ) is itself a DNF of size
at most m in mn inputs, completing the chain of reductions.

3 Average-case complexity

NP-completeness is arguably the most useful “export” of complexity theory to the rest of computer science
and beyond. A key reason for its importance is the ubiquity of NP-complete problems from a variety of
different domains. This wikipedia page lists about a hundred such problems. If you are unsuccessful in
designing an efficient algorithm for some NP problem you are interested in, chances are you will find that
problem or a closely related one in the list.

There is no a priori reason why so many of the problems within NP either admit efficient algorithms
(they are in P) or are NP-complete. Ladner’s Theorem says that non-NP complete problems outside P
must exist (unless P equals NP). In practice, however, such problems rarely if ever come up. In this class
we had to work fairly hard to construct plausible examples of non-NP-hard problems within NP like graph
isomorphism and statistical difference.

Owing to the prevalence of NP-hard problems among those that are not efficiently tractable it is useful
to have strategies for coping with NP-hardness. One such strategy is average-case algorithm design: If
we have some information about the distribution on inputs we may be able to solve the problem on
most instances of interest. This is a natural assumption in statistical inference, machine learning, and
cryptanalysis among other areas.

We saw that a worst-case hard problem like CLIQUE may become easy on average under certain
distributions, for example when the graph is random and the clique size k is either less than 0.99 log n
or greater than 10

√
n. Yet it appears to remain computationally intractable under other distributions.

Wouldn’t it be nice if there was an explanation along the lines of NP-hardness for our inability to find
efficient heuristics for problems like k-clique?

In the 1980s Levin identified a class of “average-case NP-complete problems” with the property that
if any of these problems admits an errorless heuristic, so does every problem in “distributional NP”. (A
specification of an average-case problem must also include the distribution on instances. Distributional
NP consists of all NP problems with respect to all efficiently samplable distributions.) The list of known
distributional NP-complete problems is, however, very short and does not contain most problems that

5

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

researchers care about like random k-CLIQUE and random SAT. At this point there is little evidence that
these problems are complete for distributional NP.

There is an appealing alternative approach for arguing that a problem is average-case hard: reducing
from a worst-case hard problem. We can illustrate this idea on the discrete logarithm problem. A cyclic
subgroup of a finite multiplicative group (like the integers modulo n) is a sequence of powers of some
generator g. The order of the subgroup is the smallest number n such that gn equals 1. The discrete
logarithm problem with respect to g is, on input h in the subgroup, to find the unique power 0 ≤ y < n
such that gy = h. It turns out that if we can solve this problem for say 1% of the inputs h, then we can
solve it for most h. To do so, given an arbitrary input h, we ask to solve the problem on input h · gr for a
random 0 ≤ r < n. The element h · gr is random in the subgroup so a solution will be produced with 1%
probability over the choice of r. If this is the case subracting r from this solution will output the discrete
log of h. By repeating 500 times independently and checking which answer works the success probability
will be amplified to 99%.

This is an example of a worst-case to average-case reduction: An algorithm that solves 1% of discrete
log instances can be used to solve all instances. Conversely, if we believe that discrete log is worst-case
hard, then it is also hard-on-average 99% of the time. If we could similarly reduce from some (worst-case)
NP-complete problem A to a distributional problem B we would be getting the best possible evidence that
B is average-case hard: If there was a heuristic for B it could be used to solve all instances of A implying
that P equals NP.

All known worst-case to average-case reductions, however, start with a worst-case problem in NP∩coNP.
There is some evidence that this is no accident: It can be proved that some restricted types of reductions
to distributional NP problems must start from a worst-case problem in AM∩ coAM. One interpretation of
this evidence is that we should not expect to prove distributional NP-hardness from a worst-case hardness
assumption in NP \ coNP. Hirahara’s theorem upends this expectation.

4 Meta-complexity

The Kolmogorov complexity K(x) of a string x ∈ {0, 1}n is the size of (length of the string that encodes)
the smallest Turing Machine M that halts and outputs x. For example, the string 0101 · · · 01 (repeated n
times) has Kolmogorov complexity log n + O(1): It can be output by a Turing Machine that first writes
the number n in binary representation on a helper tape (this takes log n + O(1) states) then decrements
this counter down to zero writing out a 01 in each step (this takes another O(1) states).

This definition is sensitive to the convention used to encode Turing Machines as strings. It happens
that there is a “best” encoding in the sense that no encoding can be shorter than it by more than some
fixed constant. The reason is that a program written in any language can be simulated on a Turing machine
with a fixed-size code snippet that specifies how to carry out the simulation. Therefore the length of a
program in say python that outputs x is an upper bound of its Kolmogorov complexity up to a constant
additive term. For example the python program “for i in range(n): print(01)” of size ⌈log n⌉ (the
description of n) plus some constant (the description of the other symbols) certifies that 01 repeated n
times has complexity log n+O(1).1

Meta-complexity is the study of the computational complexity of computing complexity measures like
K. It turns out that K cannot be computed at all. The following promise problem APXK is undecidable:

Input: A string x
Yes instances: K(x) ≤ log|x|+ log log|x|
No instances: K(x) > |x| − 2.

Lemma 6. The probability that K(X) ≤ n− c for a random n-bit string X is at most 2−c+1.

1This is not exactly true because the program characters are unicode symbols while python requires n to be provided in
decimal or hexadecimal notation, resulting in a Boolean program representation of length Θ(logn).

6

Proof. There are at most 2n−c+1 Turing Machines of size at most n − c, so there are at most that many
strings that can be output by them. The probability that a random n-bit string is the output of any one
of them is at most 2−c+1.

In particular this lemma says that there exists a string of complexity n− 2, so APXK has no instances
of all lengths. Assume APXK were decidable and consider the lexicographically smallest string x of length
n on which the program for APXK says no. This x cannot be a yes instance so it must have complexity
more than log n+log log n. Oh the other hand, the program “exhaustively search for the smallest length-n
string on which the program for APXK says no” outputs x and has description length log n + O(1), a
contradiction!

The reason Kolmogorov complexity is impossible to compute is that it takes into account only the size
of the program but not its running time. The time-bounded Kolmogorov complexity Kt(x) is the size of
the smallest Turing Machine that outputs x in at most t steps (and is undefined if no such Turing Machine
exists). Approximating Kt is captured by the promise problem APXKT∆s:

Input: A string x and numbers t, s (represented in unary)
Yes instances: Kt(x) ≤ s
No instances: K(x) > s+∆s.

Unlike APXK, APXKT is not only decidable but it is an NP problem: The predicate “M has size at
most s and outputs x in t steps” can be verified in time linear in the description size of M and t.

Could APXKT also be in P? One reason this is unlikely is that breaking a pseudorandom generator
is a special case of APXKT. Suppose G : {0, 1}k → {0, 1}n is a candidate pseudorandom generator that is
time-(t(k)+ k) computable by a Turing Machine. Then outputs of G have t(k)-time bounded Kolmogorov
complexity k + O(1) as each of them can be computed by a program of the form “run G on seed r”, so
they produce instances of APXKT. On the other hand, a random x is a no instance by Lemma 6, even if
∆s is as large as n− k −O(1).

Could APXKT be in coNP? In the proof of Theorem 4 we argued that if random 3SAT has an errorless
heuristic if it is possible to distinguish sequences of the form (ϕ1, ϕ1(x)), . . . , (ϕℓ, ϕℓ(x)) (type SAT) from
sequences of the form (ρ1, b1), . . . , (ρℓ, bℓ), where ρi are random 3CNF and bi are independent bits (type
RAND). By Lemma 6, the Kolmogorov complexity of most type-RAND sequences is at least (d+1)ℓ− 10,
where d is the number of random bits it takes to describe each of the formulas ρi (for an m-clause, n-
variable random 3CNF d is about 3m log(2n)). On the other hand, a type SAT sequence can be efficiently
generated by a Turing Machine of size dℓ+n+O(1): ϕ1, . . . , ϕℓ take dℓ+O(1) bits to describe and x takes
an additional n bits. Given this information the sequence can be generated in linear time by a constant-size
program. The complexity gap ∆s between the two is at least ℓ− n−O(1).

If APXKTℓ−n−O(1) were in coNP, this reduction would produce a nondeterministic errorless heuristic
for random 3CNF with n variables and about ℓ log ℓ clauses assuming say ℓ > 2n. Current algorithmic
evidence suggests that no such algorithm should exist when ℓ ≤ n1.39.

5 Hirahara’s theorem

Hirahara’s theorem shows that if APXKT has errorless heuristics then it can be solved in the worst case:

Theorem 7. If APXKT∆s has a polynomial-time errorless heuristic then it has a randomized worst-case
polynomial-time algorithm (with ∆s = O((

√
s+ log|x|) log|x|)).

Assuming say s < 0.99|x|, most instances are no instances of APXT by Lemma 6. An errorless heuristic
D for APXKT will reject most of these instances but output “I don’t know” on all the ones that have small
time-bounded Kolmogorov complexity. Such a heuristic therefore distinguishes low-complexity strings from
random ones.

7

A natural proof strategy for Theorem 7 is to look for a reduction that maps low-complexity strings
into low-complexity strings and high-complexity strings into random strings. It is unclear how complex-
ity can be turned into randomness, and the negative results on worst-case to average-case reduction we
mentioned suggest this may be challenging. However we already saw a transformation that almost does
the job: The Nisan-Widgerson generator turns computational hardness (another form of complexity) into
pseudorandomness.

Theorem 7 is indeed proved by interpreting the worst-case MINKT instance f as the truth-table of a
function and outputting the result y of the Nisan-Wigderson generator applied to f on a random seed.
This transformation outputs y = (f(x|S1), . . . , f(x|Sm)) for a random string x. Recall that S1, . . . , Sm
is a combinatorial design, that is a large collection of large sets every pair of which have relatively small
intersection. If f has low time-bounded Kolmogorov complexity and the design can be efficiently computed
in a suitable sense then so will g.

On the other hand, the proof of Nisan and Wigderson showed that if g can be distinguished from a
random function by the errorless heuristic D then f can be predicted on random inputs using D and
some extra information (the truth-tables of all

(
m
2

)
restrictions of f on subsets of size t∩). Thus f can be

approximated by some function of low Kolmogorov complexity. By using a more clever encoding of the
truth-table of f it can be ensured that f has low Kolmogorov complexity itself. Apart from bookkeeping
complexity losses and the choice of a suitable design this is the whole proof of Hirahara’s theorem.

An intriguing follow-up question is whether APXKT is an NP-complete problem. Proving this would
establish the existence of distributional NP problems that are NP-hard to solve by errorless heuristics.
Hirahara himself proved that some related problems are NP-complete. A few weeks ago Ilango gave strong
evidence that a related problem called Minimum Circuit Size which also admits worst-case and average-
case equivalence is likely to be NP-complete, but his argument for NP completeness relies on an unproven
average-case hardness assumption. The plot is getting thicker.

References

The study of average-case complexity for NP was initiated in a legendary 2-page paper of Levin. The
difficulty of applying Levin’s theory to natural problems was addressed by Trevisan. The distinction
between error-prone and errorless heuristics was pointed out in another legendary survey by Impagliazzo.
Impagliazzo’s paper laid out the main complexity theoretic questions which largely remain open.

The complexity of random kSAT and other constraint satisfaction problems was studied by several
authors. This survey of Allen, O’Donnell, and Witmer is a good starting point. A good source for PAC
learning is the book of Shalev-Schwartz and Ben-David.

Theorem 4 was proved by Daniely, Linial, and Shalev-Schwartz. The exposition here is based on this
paper of Vadhan.

8

https://eccc.weizmann.ac.il/report/2022/119/
https://eccc.weizmann.ac.il/report/2023/165/
https://epubs.siam.org/doi/pdf/10.1137/0215020?casa_token=1AqfWkkWr1cAAAAA:utJFDoHefBq3d7lMMNm47MZNA6N7WvbLu3PYSkhWHh8EIuVRTM2-eefO2ZnI9jDKQK75AJHA
https://eccc.weizmann.ac.il/report/2010/034/
https://www.karlin.mff.cuni.cz/~krajicek/ri5svetu.pdf
https://arxiv.org/pdf/1505.04383.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
https://proceedings.mlr.press/v65/vadhan17a.html
https://proceedings.mlr.press/v65/vadhan17a.html

	Errorless and error-prone heuristics
	Random refutation and hardness of PAC learning
	Average-case complexity
	Meta-complexity
	Hirahara's theorem

