1. X and Y are independent random variables, both with the following PMF:

x	1	2	4
$f(x)$	$1 / 3$	$1 / 3$	$1 / 3$

(a) Find the PMF of $X+Y$.

Solution: Let $Z=X+Y$. Using the convolution formula $\mathrm{P}(Z=z)=\sum_{x} \mathrm{P}(X=$ x) $\mathrm{P}(Y=z-x)$ we obtain the following PMF:

z	2	3	4	5	6	8
$f_{Z}(z)$	$1 / 9$	$2 / 9$	$1 / 9$	$2 / 9$	$2 / 9$	$1 / 9$

(b) Are X and $X+Y$ independent? Justify your answer.

Solution: No, because $\mathrm{P}(X=1, X+Y=3)=\mathrm{P}(X=1, Y=2)=\mathrm{P}(X=$ 1) $\mathrm{P}(Y=2)=1 / 9$, while $\mathrm{P}(X=1) \mathrm{P}(X+Y=3)=1 / 3 \cdot 2 / 3=2 / 9$.
2. The number of cars behind a traffic light at the time it turns green is a Poisson random variable X with mean 1 . The number of cars that cross the green light is $\min \{X, 3\}$.
(a) Find the PMF of the number of cars that cross the (green) light.

Solution: Let Y be this number. Then Y and X have the same probability of taking values 0,1 , and 2 . Since probabilities must add up to one the event $Y=3$ must be assigned the remaining probability. Using the Poisson PMF formula $\mathrm{P}(X=x)=1 /(x!e)$ we obtain the following PDF for Y :

y	0	1	2	3
$f(y)$	$1 / e$	$1 / e$	$1 / 2 e$	$1-5 / 2 e$.

(b) The light turns green 50 times within the hour. Is the probability that more than 100 cars cross within the hour larger or smaller than 50% ? Justify your answer.

Solution: The expected number of cars that cross a green light is

$$
\mathrm{E}[Y]=1 \cdot \frac{1}{e}+2 \cdot \frac{2}{e}+3\left(1-\frac{5}{2 e}\right)=3-\frac{11}{2 e} \approx 0.977
$$

By linearity of expectation, the expected number of cars that cross within the hour is about $50 \cdot 0.977$. By Markov's inequality, the probability that more than $2 \cdot 50 \cdot 0.977=97.7$ cars cross within the hour is less than 50%.
(Alternatively you can apply Markov's inequality to the sum of the X 's and use the fact that the Y 's are never larger than the X 's.)
3. Alice and Bob independently arrive at the bus stop at a uniformly random time between 8 and 9 . There are buses at $8.15,8.30$, and 9 .
(a) What is the probability that they catch the same bus?

Solution: We model A and B as independent $\operatorname{Uniform}(0,1)$ random variable representing the fraction of the hour at which Alice show up. The event E of interest is " $A, B \leq 1 / 4$ or $1 / 4<A, B \leq 1 / 2$ or $A, B>1 / 2$ ". Since the events are disjoint and A, B are independent,

$$
\begin{aligned}
\mathrm{P}(E) & =\mathrm{P}(A, B \leq 1 / 4)+\mathrm{P}(1 / 4<A, B \leq 1 / 2)+\mathrm{P}(A, B>1 / 2) \\
& =\frac{1}{4} \cdot \frac{1}{4}+\frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{2}=\frac{3}{8}
\end{aligned}
$$

(b) Given that Bob did't run into Alice on the 8.30 bus, what is the probability that Alice caught the 8.15 bus?

Solution: Let F be the event that Alice did not arrive between 8.15 and 8.30, namely " $A \leq 1 / 4$ or $A>1 / 2$ ". Then

$$
\begin{aligned}
\mathrm{P}(A \leq 1 / 4 \mid F) & =\frac{\mathrm{P}(A \leq 1 / 4 \text { and } F)}{\mathrm{P}(F)}=\frac{\mathrm{P}(A \leq 1 / 4)}{\mathrm{P}(A \leq 1 / 4)+\mathrm{P}(A>1 / 2)} \\
& =\frac{1 / 4}{1 / 4+1 / 2}=\frac{1}{3}
\end{aligned}
$$

4. The body weight of a random person is a normal random variable with mean 60 kg and standard deviation 10 kg . The carrying capacity of an elevator is 600 kg . If nine people enter the elevator, what is the probability that the weight limit is exceeded? Assume their weights are independent.

Solution: The weight of all nine people is a sum of nine independent $\operatorname{Normal}(60,10)$ random variables, which is a normal random variable of mean $9 \cdot 60=540$ and standard deviation $\sqrt{9} \cdot 10=30$. To exceed the carrying capacity the weight has to exceed its mean by more than two standard deviations. From the table this probability is approximately $1-0.9772=0.0228$, or 2.28%.
5. Bob found a coin on the street. The null hypothesis is that the coin is fair. Bob conjectures the alternative hypothesis that the coin comes up heads 90% of the time. To test, Bob keeps flipping the coin until a tail comes up and then stops. If t or more flips were performed Bob accepts the alternative hypothesis. If not he rejects it.
(a) How should Bob choose t if he wants a false positive probability (type I error) of at most 8% ?

Solution: The number N of times the fair coin is flipped until a tail is a Geometric (1/2) random variable. A false positive occurs when N is at least t, namely if the first $t-1$ tosses were all heads, so $\mathrm{P}(N \geq t)=1 / 2^{t-1}$. For a false positive error of at most $8 \%, t-1$ should equal 4 , so t should equal 5 .
(b) For the choice of t in part (a), what is the false negative probability (type II error)?
Solution: This is the probability that a $\operatorname{Geometric}(1 / 10)$ random variable takes value less than $t=5$, which is $1 / 10\left(1+9 / 10+(9 / 10)^{2}+(9 / 10)^{3}\right) \approx 0.344$.

