Practice questions

- A point is chosen uniformly at random inside a triangle with base 1 and height 1. Let X be the distance from the point to the base of the triangle. Find the CDF and the PDF of X. (*Textbook problem 3.2.5*)
- 2. The arrival times of the 193 ENGG 2430A / ESTR 2004 to class are normal random variables with a mean value of 9.25am and a standard deviation of 5 minutes.
 - (a) What is the expected number of students that have arrived by 9.30am?
 - (b) Assuming students' arrivals are independent, what is the probability that everyone has made it by 9.45am?
- 3. Three points are dropped at random on the perimeter of a circle with 1 unit circumference.
 - (a) What is the probability that they all fall within 1/4 of a unit of one another?
 - (b) What is the probability that every pair of them is at least 1/4 of a unit apart? (Hint: Fix one of the three points.)
- 4. A coin has probability P of being heads, where P itself is a Uniform(0, 1) random variable. The coin is flipped twice. Given that it comes out heads both times, what is the (posterior) PDF of P? What is its expected value?
- 5. Here is a way to solve Buffon's needle problem without calculus. Recall that an ℓ inch needle is dropped at random onto a lined sheet, where the lines are one inch apart.
 - (a) Let A be the number of lines that the needle hits. Let B be the number of times that a polygon of perimeter ℓ hits a line. Show that E[A] = E[B]. (Hint: Use linearity of expectation.)
 - (b) Assume that $\ell < \pi$. Calculate the expected number of times that a circle of perimeter ℓ hits a line.
 - (c) Assume that $\ell < 1$. Use part (a) and (b) to derive a formula for the probability that the needle hits a line. (**Hint:** The number of hits is a Bernoulli random variable.)