1. Each of the 200 ENGG2430 students shows up to class independently with probability 0.9 and asks Poisson(0.05) questions in there. Let S be the number of students in class and Q the total number of questions asked. Find (a) $\mathrm{E}[S]$, (b) $\mathrm{E}[Q \mid S]$, (c) $\mathrm{E}[Q]$, (d) $\operatorname{Var}[\mathrm{E}[Q \mid S]]$, (e) $\operatorname{Var}[Q \mid S],(\mathrm{f}) \mathrm{E}[\operatorname{Var}[Q \mid S]],(\mathrm{g}) \operatorname{Var}[Q]$.
2. You flip a coin with unknown probability of heads p. You want to learn the value of p.
(a) Alice suggests the following estimator \hat{P}_{A} : Keep flipping the coin until you see the first head in the N-th flip. Set $\hat{P}_{A}=1 / N$.
(b) Bob suggests another estimator \hat{P}_{B} : Flip the coin 10 times, count the number of heads Y and set $\hat{P}_{B}=Y / 10$.

What is the expectation of each estimator in terms of p ? Which one is better?
In the next two questions, estimate the quantity of your interest using the method of your choice: Markov's inequality, Chebyshev's inequality, or the Central Limit Theorem. Justify why the method is applicable and discuss the quality of the estimate.
3. The following exam statistics are posted on the course website:

section	no. students	average grade	std. dev.
A	30	65	5
B	20	70	10

what can you say about the number of students whose exam grade was 30 or below?
4. You are collecting donations for a charity. Each donor gives you $\$ 10$ with probability half and $\$ 20$ with probability half. Assuming donors are independent, estimate the probability that you have collected at least $\$ 1200$ after taking in 100 donations.
5. You randomly divide 48 boys and 48 girls into teams of equal size. Show that if you divide them into 12 teams of 8 then there are no same-sex teams with probability at least 90%.

