Practice questions

1. X is a Geometric (Θ) random variable, where Θ itself is a random variable with $\operatorname{PDF} f_{\Theta}(\theta)=$ 2θ where $0 \leq \theta \leq 1$. What are the MAP (Maximum a Posteriori) estimator and ML (Maximum Likelihood) estimates for Θ ?
2. Jason has two 4 -sided dice in a bag. Die A has sides $1,2,3,4$ and die B has sides $2,2,3,3$. Jason picks one of the dice randomly, rolls it twice, and reports the sum S of the rolls. Your task is to guess which die Jason rolled based on the value of S.
(a) For which values of S would you guess that Bob rolled die A?
(b) If you guess like in part (a), what is the probability that your guess is wrong?
3. A food processing company packages honey in glass jars. The volume of honey in a random jar is a $\operatorname{Normal}(\mu, 5)$ millilitre random variable for an unknown value of μ. The government wants to verify that μ is at least 100 millilitres.
(a) The government proposes the following test: Choose a random jar and verify that the jar has at least t millilitres of honey. Which value of t should be chosen so that a complying company passes the test with probability at least 95% ?
(b) The ACME company jars contain $\operatorname{Normal}(95,5)$ millilitres of honey. What is the probability that ACME passes the test?
4. A random variable X is $\operatorname{Normal}(1,1)$ with probability p and $\operatorname{Normal}(-1,1)$ with probability $1-p$, where the parameter p is unknown.
(a) What is the PDF of X ?
(b) What is the maximum likelihood estimate of p given that $X=x$?
(c) (Optional) Let X_{1} and X_{2} be independent samples of X. What is the maximum likelihood estimate of p given that $X_{1}=x_{1}$ and $X_{2}=x_{2}$?
5. Coin A has probability of heads 40%. Coin B has probability of tails 40%. One of these coins is tossed is n times. How large does n need to be so that you can identify the coin with probability about 99% ? (Hint: Use a normal approximation, or write a computer program.)
