1. Let N be the number of times you flip a fair coin until you observe both a head and a tail. For example if the outcome is HHHT then $N=4$. What is $\mathrm{E}[N]$ and $\operatorname{Var}[N]$?

Solution: $N=1+G$ where G is a Geometric $(1 / 2)$ random variable: If the first toss is head you keep tossing a fair coin until you see a tail, and vice versa. Therefore $\mathrm{E}[N]=1+\mathrm{E}[G]=3$ and $\operatorname{Var}[N]=\operatorname{Var}[G]=(1-1 / 2) /(1 / 2)^{2}=2$.
2. You flip a p-biased coin (heads with probability p) 10 times. For which value(s) of p, if any, are the events $A=$ "the first two flips are heads" and $B=$ "there are exactly two heads" independent?

Solution: . Event A has probability p^{2}. Event B has probability $\binom{10}{2} p^{2}(1-p)^{8}$. Event $A \cap B$ occurs when two heads are followed by eight tails, so it has probability $p^{2}(1-p)^{8}$. So A and B are independent if and only if

$$
p^{2} \cdot\binom{10}{2} p^{2}(1-p)^{8}=p^{2}(1-p)^{8}
$$

This equation has four solutions: $p=0, p=1$ and $p= \pm\binom{ 10}{2}^{-1 / 2}= \pm 1 / \sqrt{45}$. Discarding the negative one, the desired values of p are 0,1 , and $1 / \sqrt{45}$.
3. Keep rolling a 3 -sided die until the sum of the values strictly exceeds 2 . For example if the first roll is a 1 then you roll again; if the second roll is then a $2,1+2=3>2$ and you stop. Find the PMF of the number of times you rolled.

Solution: The random variable X of interest can take values 1,2 , and 3 . $X=1$ happens if and only if the first roll is a 3 , so $\mathrm{P}(X=1)=1 / 3 . \quad X=3$ happens if and only if the first two rolls are both 1 , so $\mathrm{P}(X=3)=1 / 9$. Since probabilities must add up to 1 , we get that $\mathrm{P}(X=2)=1-1 / 3-1 / 9=5 / 9$.
4. On a light rain day, rain falls at an average rate of 1 drop per second. On a heavy rain day, the average rate is 2 drops per second. $2 / 3$ of the rainy days are light and $1 / 3$ are heavy. You walk out and 2 drops of rain hit you in the next second. What is the probability it is a light rain day?

Solution: Let L and H be the events of light and heavy rain and N be the number of drops that hit you. We model $N \mid L$ and $N \mid H$ as Poisson(1) and Poisson(2) random variables, respectively. By Bayes' rule,

$$
\begin{aligned}
\mathrm{P}(L \mid N=2) & =\frac{\mathrm{P}(N=2 \mid L) \mathrm{P}(L)}{\mathrm{P}(N=2 \mid L) \mathrm{P}(L)+\mathrm{P}(N=2 \mid H) \mathrm{P}(H)} \\
& =\frac{\left(1^{2} e^{-1} / 2\right) \cdot(2 / 3)}{\left(1^{2} e^{-1} / 2\right) \cdot(2 / 3)+\left(2^{2} e^{-2} / 2\right) \cdot(1 / 3)} \\
& =\frac{e}{e+2} \approx 0.576 .
\end{aligned}
$$

2 5. Let N be the number of distinct values observed when a 6 -sided die is rolled 6 times. For example, if the outcome is 521154 then the observed values are $\{1,2,4,5\}$ and $N=4$. What is $\mathrm{E}[N]$?

Solution: We can write $N=N_{1}+N_{2}+N_{3}+N_{4}+N_{5}+N_{6}$ where N_{1} takes value 1 if a 1 was observed and 0 if not, and similarly for the others. Then $\mathrm{E}\left[N_{1}\right]=\mathrm{P}\left[N_{1}=1\right]$ is the probability that a 1 was observed. This is one minus the probability that a 1 was not observed, which is $(5 / 6)^{6}$ by independence. Summarizing, $\mathrm{E}\left[N_{1}\right]=1-(5 / 6)^{6}$. By symmetry, $\mathrm{E}\left[N_{1}\right]=\cdots=\mathrm{E}\left[N_{6}\right]$, so $\mathrm{E}[N]=6\left(1-(5 / 6)^{6}\right) \approx 3.991$.

