1. Let X, Y, Z be independent $\operatorname{Binomial}\left(2, \frac{1}{2}\right)$ random variables.
(a) What is the conditional PMF of X conditioned on $X \neq Z$?
(b) Are X and Y independent conditioned on $(X \neq Z)$ And $(Y \neq Z)$?
2. Alice and Bob decide to meet somewhere. Alice's arrival time A is uniform between 12:00 and 12:45. Bob's arrival time B is uniform between 12:15 and 1:00. Their arrival times are independent.
(a) Let f_{A-B} be the PDF of $A-B$. What is $f_{A-B}(0)$?
(b) What is the probability that Bob arrives before Alice?
3. Let $Y=A X+B$ where A, B, X are independent $\operatorname{Normal}(0,1)$ random variables.
(a) What is $\operatorname{Var}[\mathrm{E}[Y \mid X]]$?
(b) What is $\mathrm{E}[\operatorname{Var}[Y \mid X]]$?
4. Boys and girls arrive independently at a meeting point at a rate of one boy per minute and one girl per minute, respectively. Let T be the first time at which both a boy and a girl have arrived.
(a) Find the cumulative distribution function (CDF) of T.
(b) What is the expected value of T ? (Hint: You don't have to use calculus.)
5. A deck of cards is divided into 26 pairs. Let X be the number of those pairs in which both cards are of the same suit. (A deck of cards has 4 suits and each suit has 13 cards.)
(a) What is the expected value of X ?
(b) What is the variance of X ?
(c) Is the probability that $X=0$ more or less than 20% ? Justify your answer.
