- 1. Let X, Y, Z be independent Binomial $(2, \frac{1}{2})$ random variables.
 - (a) What is the conditional PMF of X conditioned on $X \neq Z$?
 - (b) Are X and Y independent conditioned on $(X \neq Z)$ AND $(Y \neq Z)$?
- 2. Alice and Bob decide to meet somewhere. Alice's arrival time A is uniform between 12:00 and 12:45. Bob's arrival time B is uniform between 12:15 and 1:00. Their arrival times are independent.
 - (a) Let f_{A-B} be the PDF of A B. What is $f_{A-B}(0)$?
 - (b) What is the probability that Bob arrives before Alice?
- 3. Let Y = AX + B where A, B, X are independent Normal(0, 1) random variables.
 - (a) What is $\operatorname{Var}[\mathrm{E}[Y|X]]$?
 - (b) What is E[Var[Y|X]]?
- 4. Boys and girls arrive independently at a meeting point at a rate of one boy per minute and one girl per minute, respectively. Let T be the first time at which both a boy and a girl have arrived.
 - (a) Find the cumulative distribution function (CDF) of T.
 - (b) What is the expected value of T? (Hint: You don't have to use calculus.)
- 5. A deck of cards is divided into 26 pairs. Let X be the number of those pairs in which both cards are of the same suit. (A deck of cards has 4 suits and each suit has 13 cards.)
 - (a) What is the expected value of X?
 - (b) What is the variance of X?
 - (c) Is the probability that X = 0 more or less than 20%? Justify your answer.