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Induction is a method for proving statements of the form “For all n, P (n)”, where n ranges over the
positive integers. It is particularly useful in computer science when reasoning about the correctness
of algorithms. Let’s start with an example.

Theorem 1. For every positive integer n, the sum of the integers from 1 to n is n(n + 1)/2.

The kinds of proofs we learned last time don’t seem to help. Before we do the proof let’s gain some
confidence that the theorem is plausible by working out a few small examples:

• When n = 1, (1 + 1)/2 = 1.

• When n = 2, 1 + 2 = 3, and 2 · (2 + 1)/2 = 3.

• When n = 3, 1 + 2 + 3 = 6 and 3 · (3 + 1)/2 = 6.

• When n = 4, 1 + 2 + 3 + 4 = 10 and 4 · (4 + 1)/2 = 10.

The cases check out, but we cannot go on like this forever. How can we prove the theorem for all
n? Let’s give the predicate “The sum of integers from 1 to n is n(n + 1)/2 a name; call it P (n).

Induction models the following reasoning process. First, we prove P (1). Then we prove P (2); in
our proof for P (2), we can assume that P (1) is known to be true (use it as an axiom). When we
prove, P (3), we can assume P (2) to be true, and so on:

P (1) P (1) −→ P (2) P (2) −→ P (3) P (3) −→ P (4)

P (1) and P (2) and P (3) and P (4)

We can extend this reasoning to a general value of n. If we prove P (1) is true, and we prove that
for every n ≥ 1, P (n + 1) is true assuming P (n), then P (n) must be true for all n:

Induction proof method:

P (1) P (n) −→ P (n + 1) for all positive integers n

P (n) for all positive integers n

Proposition P (1) is called the base case; proposition P (n) −→ P (n + 1) for all n is called the
inductive step. The prove the inductive statement, you can try any of the methods from the
previous lecture.

Proof of Theorem 1. We prove the theorem by induction on n. Let S(n) denote the sum of the
first n integers. Then the proposition says that

S(n) =
n(n + 1)

2
for all positive integers n

1



2

Base case n = 1: S(1) = 1 and 1(1 + 2)/2 = 1, so S(1) = 1(1 + 1)/2.

Inductive step: We need to show that for every positive integer n

S(n) =
n(n + 1)

2
−→ S(n + 1) =

(n + 1)(n + 2)

2
.

Let n be any positive integer. We assume S(n) = n(n + 1)/2. Then

S(n + 1) = S(n) + (n + 1)

so, by our assumption that S(n) = n(n + 1)/2, we get

S(n + 1) = S(n) + (n + 1) =
n(n + 1)

2
+ (n + 1) =

n(n + 1)

2
+

2(n + 1)

2
=

(n + 1)(n + 2)

2
.

It follows by induction that S(n) = n(n + 1)/2 for all positive integers n.

1 More proofs by induction

Let’s do another example, this one involving an inequality. The factorial of n, denoted by n!, is the
number obtained by multiplying all integers from 1 to n:

n! = 1 · 2 · · ·n.

Theorem 2. For every integer n ≥ 4, n! > 2n.

We will prove this theorem by induction. The base case here will be n = 4.

Proof. We prove the theorem by induction on n.

Base case n = 4: 4! = 1 · 2 · 3 · 4 = 24 > 16 = 24, so the base case holds.

inductive step: We need to show that for every positive integer n ≥ 4

n! > 2n −→ (n + 1)! > 2n+1.

Let n be any positive integer greater or equal to 4. We assume n! > 2n. Then

(n + 1)! = n! · (n + 1) > 2n · (n + 1) > 2n · 2 = 2n+1.

It follows by induction that n! > 2n for all integers n ≥ 4.

How did one come up with the inequality 2n · (n + 1) > 2n × 2? It was a bit of a lucky guess, but
you can reason about it backwards. In the inductive step, we need to prove that 2n · (n+1) > 2n+1.
If we factor out 2n from both sides, we are left with showing that n + 1 > 2. This is the same as
saying n > 1, which is certainly true under the assumption n ≥ 4.

This kind of “backwards reasoning” is often helpful in proofs by induction. You are encouraged to
use it as part of your scratch work, but not in the written proof.
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Theorem 3. For every positive integer n, n3 − n is a multiple of 6.

You can prove this theorem in several ways. Try a proof by cases at home. Here we’ll do it using
induction.

Proof. We prove the theorem by induction on n.

Base case n = 1: 13 − 1 = 0, which is a multiple of 6, so the base case holds.

inductive step: We need to show that for every positive integer n,

n3 − n is a multiple of 6 −→ (n + 1)3 − (n + 1) is a multiple of 6.

Let n be any positive integer. We assume that n3 − n is a multiple of 6. Then

(n + 1)3 − (n + 1) = (n3 + 3n2 + 3n + 1)− (n + 1) = n3 + 3n2 + 2n = (n3 − n) + 3(n2 + n)

By inductive hypothesis, n3−n is a multiple of 6. In the last lecture we showed that n2 +n is even
for all n, so 3(n2 + n) is also a multiple of 6. Therefore (n3− n) + 3(n2 + n) is also a multiple of 6.

It follows by induction that n3 + n is a multiple of 6 for all positive integers n.

Where did the equality
n3 + 3n2 + 2n = (n3 − n) + 3(n2 + n)

come from? Our assumption says that n3 − n is divisible by 6, but the expression n3 + 3n2 + 2n
doesn’t “contain” n3 − n. To take advantage of the assumption, it makes sense to subtract one n
from n3 and compensate by adding another one to 3n2 + 2n.

Strengthening the hypothesis

You are given a 2n by 2n square grid with a central square removed. (A central square is one that
touches the center of the grid.) You want to tile the remaining squares with 2 by 1 L-shaped tiles.
Can it always be done? Here is an example with n = 2:

Let us prove that that a tiling always exists.
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Theorem 4. For every positive integer n, there exists a tiling of a 2n by 2n square grid with a
central square removed using 2 by 1 L-shaped tiles.

Let us try to prove this theorem by induction. In the base case n = 1, the tile has dimensions 2 by
2 and the proposition is clearly true.

Now let’s try the inductive step. Let us fix n and assume the proposition is true for n, namely
there exists a tiling of a 2n by 2n grid with a central square removed. We want to show that there
also exists a tiling of a 2n+1 by 2n+1 grid with a central square removed. To apply the inductive
hypothesis, it makes sense to split this grid into four 2n by 2n subgrids. Unfortunately, the subgrids
don’t satisfy the requirement of having their central square removed; one of them will be missing
a corner and the other three will be whole. It looks like we are stuck.

The trick here is to prove a more general theorem – one of which Theorem 4 is a special case.

Theorem 5. For every positive integer n, there exists a tiling of a 2n by 2n square grid with any
one square removed using 2 by 1 L-shaped tiles.

Proof. We prove the theorem by induction on n.

Base case n = 1: Given a 2 by 2 grid with any square removed, the other 3 form a 2 by 1 L-shape,
so they can be covered by one tile. Therefore a covering of the grid by tiles exists.

Inductive step: Let us assume that a 2n by 2n grid with any one square removed can be tiled
using 2 by 1 L-shaped tiles. We will show that the same is true for a 2n+1 by 2n+1 grid. Let G
be a 2n+1 by 2n+1 grid with some square removed. Divide G into four 2n by 2n quadrants G1, G2,
G3, G4. One of these quadrants will contain the missing tile. Temporarily remove the center tiles
of G that do not below to that quadrant. Then each of G1, G2, G3, and G4 becomes a 2n by 2n

grid with one square removed. By inductive hypothesis, each one of them can be tiled using 2 by
1 L-shapes. Tile all the subgrids and cover the temporarily removed three center tiles of G by one
more L-shape. The resulting tiling covers all of G except for the removed square.

It follows by induction that for every n there exists a tiling of the 2n by 2n square grid with any
square removed using 2 by 1 L-shaped tiles.

Theorem 5 (which allows for any square in the grid to be removed) is more general than Theorem 4,
so we would expect it to be more difficult to prove. However, we proved Theorem 5, while the same
proof method failed when we tried it on Theorem 4! The reason is that in proofs by induction, the
predicate P (n) plays the role both of assumption and conclusion. Sometimes making a stronger
assumption allows us to prove a stronger conclusion.

An interesting feature of this proof is that it not only tells us the desired tiling exists, but also how
to find it. You can write a computer program that does it or play with the python code available
from course web page.

A false proof

“Theorem:” In every nonempty collection of horses, all horses are of the same colour.
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Proof. We prove this theorem by induction on the size of the collection n.

Base case n = 1: The collection has one horse, so the statement is true.

Inductive step: Assume that in every collection of n horses, all of them have the same color.
We will prove that in every collection of n + 1 horses, all of them have the same colour. Take any
collection of n + 1 horses:

h1, h2, . . . , hn+1.

By our assumption, the first n horses h1, . . . , hn are of the same colour. By the same assumption,
the last n horses h2, . . . , hn+1 have the same colour. So h1, . . . , hn+1 all have the same colour.

It follows by induction that all horses in the collection are of the same colour.

Where was the mistake? To “debug” a proof by induction, it is a good idea to try out some values
of n and see where the chain of reasoning went wrong. Let P (n) be the predicate “All collections
of n horses have the same colour.” As we saw, P (1) is true. However, P (2) is already false. So the
inductive step fails when n = 1, that is when we try to prove P (2) assuming P (1). The proof says
that in this case, the first 1 horse(s) have the same colour and the last 1 horse(s) have the same
colour. We cannot conclude that both have the same colour! In other words, the deduction

h1, . . . , hn have the same color h2, . . . , hn+1 have the same color

h1, . . . , hn+1 have the same color

is not valid when n = 1.

2 Invariants

In computer science and some other engineering disciplines you often study systems that evolve
over discrete time according to some rules. An invariant is a property that remains true over the
lifetime of the system. Induction allows us to prove invariants: To show the invariant holds, we
prove it is satisfied in the initial state, and that assuming it holds at time n, it also holds at time
n + 1 for every n – that is, it is preserved by the rules the govern the evolution of the system.

Here is a simple example. You have a robot that can walk across diagonals on an infinite 2-
dimensional grid. Its coordinates at any given time are described by a pair of integer coordinates
(x, y). In each time step, the robot moves by exactly one unit left or right and by exactly one unit
up or down. At time 0 robot starts at position (0, 0). (Thus, at time 1, the robot will be in one of
the four positions (−1,−1), (−1, 1), (1,−1), (1, 1).) Can the robot ever reach position (1, 0)?

We show that this is not possible by proving a theorem:

Theorem 6. For every n, if the robot is at position (x, y) at time n, then x + y is even.

Therefore the robot can never reach position (1, 0) because 1 + 0 is odd.
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Proof. We prove the theorem by induction on n.

Base case n = 0: The start state is (0, 0) and 0 + 0 is even.

Inductive step: Assume that at time n, the robot is at position (x, y) and x + y is even. Let
(x′, y′) be the position of the robot at time n+1. We will prove that x′ +y′ is even by case analysis:

• The robot moves left and down: Then x′ = x − 1, y′ = y − 1, so x′ + y′ = (x + y) − 2 – an
even number minus two, therefore even.

• The robot moves left and up: Then x′ = x− 1, y′ = y + 1, so x′ + y′ = x + y, which is even.

• The robot moves right and up: Then x′ = x+ 1, y′ = y + 1, so x′ + y′ = (x+ y) + 2 – an even
number plus two, therefore even.

• The robot moves right and down: Then x′ = x + 1, y′ = y − 1, so x′ + y′ = x + y, which is
even.

It follows by induction that the sum of the robot’s coordinates is always even.

Here is another, more challenging example. It is about the following puzzle. The starting config-
uration is the one on the left. You are supposed to reach the configuration on the right. At each
point, you are allowed to move an adjacent tile into the unoccupied square.

1 2 3

4 5 6

8 7

1 2 3

4 5 6

7 8

We will show that this is not possible using an invariant. This invariant is trickier than the one in
the last problem. To explain it, we need two concepts.

We say tile a appears before tile b if tile a is in a higher row than tile b or if they are in the same
row, tile a is to the left of tile b. We say the pair of tiles (a, b) form an inversion if a < b and tile b
appears before tile a.

For example, in the final configuration there are no inversions. In the initial configuration, there is
exactly one inversion consisting of the pair (8, 7). In the following configuration, the inversions are
(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 6), (4, 6), (4, 7), (5, 6), and (5, 7).

1 6 3

7 4

25 8
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We will show the following invariant: The number of inversions is odd.

Theorem 7. For every n, after n moves the number of inversions is odd.

Proof. We prove the theorem by induction on n.

Base case n = 0: In the initial configuration, there is exactly one inversion – the pair (8, 7). So
initially the number of inversions is odd.

Inductive step: Assume that after n steps, the number of inversions is odd. We will show that
the same is true after n + 1 steps. The (n + 1)st move can be a row move (a tile moves to the left
or to the right) or a column move (a tile moves up or down). The proof is by case analysis.

• If the (n+ 1)st move is a row move, then the relative order of any pair of tiles stays the same,
so the number of inversions stays the same. By assumption, it is odd.

• If the (n+1)st move is a column move, then the only pairs of tiles whose relative order changes
are the pairs of type (m, b), where m is the tile that was moved and b is a tile between the
tile that was moved and the empty space. There are exactly two tiles of the second type. We
conclude that the (n+1)st move changed the relative order of exactly two pairs of tiles. Let’s
call these pairs p1 and p2.

Now we consider three subcases. If p1 and p2 were both inversions at time n, then the number
of inversions in move n+ 1 decreases by 2, so it remains odd. If one of them was an inversion
at time n but not the other, then the number stays the same, so it remains odd. If neither
was an inversion at time n, then the number of inversions increases by 2, and it also remains
odd. We conclude that the number of inversions after move n + 1 is odd.

It follows by induction that the number of inversions is always odd.

In the final configuration, the number of inversions is even. By Theorem 7, the final configuration
can never be reached.

3 Strong induction

Recall our intuition for induction: If we want to prove a predicate P (n) holds for all n ≥ 1, first we
prove P (1). Then assuming P (1) we prove P (2). Then assuming P (2) we prove P (3); and so on.
In fact, we can make our assumptions stronger as we go along. By the time we are proving P (3),
we have proved not only P (2) but also P (1), so we can assume both of them to hold:

P (1) P (1) −→ P (2) (P (1) and P (2)) −→ P (3) (P (1) and P (2) and P (3)) −→ P (4)

P (1) and P (2) and P (3) and P (4)

The strong induction proof method extends this reasoning to a general value of n: If we prove P (1)
and we prove that for every n ≥ 1, P (n + 1) is true assuming P (1) up to P (n) are all true, then
P (n) must be true for all n:
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Strong induction proof method:

P (1) (P (1) and . . . and P (n)) −→ P (n + 1) for all positive integers n

P (n) for all positive integers n

Here is a problem where strong induction is useful. Suppose you have an unlimited supply of $3
and $5 stamps. Which postage amounts are your stamps good for?

Let’s model this as a problem about numbers. The postage amounts you can obtain are numbers
of the form 3a+ 5b, where a and b range over all nonnegative integers. You can easily see that the
numbers 1, 2, 4, 7 cannot be written in this way, while 3, 5, 6 can. Let’s now see what happens when
n ≥ 8.

We can write 8 = 3 + 5, 9 = 3× 3, 10 = 2× 5. Once we have 8, 9, and 10, we can form any other
number by adding a sufficient number of 3s: 11 = 8 + 3, 12 = 9 + 3, 13 = 10 + 3, 14 = 11 + 3, and
so on. Here is how we write this argument as a proof by strong induction.

Theorem 8. Any integer n ≥ 8 can be written in the form 3a + 5b for some integers a, b ≥ 0.

Proof. We prove the theorem by strong induction on n.

Base case n = 8: We can write 8 = 3 + 5, so the theorem is true for a = b = 1.

Inductive step: Let n be any number greater than or equal to 8. We assume any integer from 8
to n can be written in the form 3a + 5b. We will show that n + 1 can also be written as 3a + 5b.
The proof is by cases:

• Case n + 1 = 9: We can write 9 = 3× 3.

• Case n + 1 = 10: We can write 2 = 5× 2.

• Case n+1 ≥ 11: In this case, (n+1)−3 ≥ 8, so by inductive hypothesis, (n+1)−3 = 3a+5b
for some integers a, b ≥ 0. Then n + 1 = 3(a + 1) + 5b.

By strong induction, we can write any n ≥ 8 in the form 3a + 5b for integers a, b ≥ 0.
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