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In mathematics, the truth of propositions is established by giving a mathematical proof. If there
is no proof, then we do not regard the proposition as true, no matter how “obvious” it may look.
Today we will talk about what a mathematical proof is and how you may go about finding one.

The good news is that there are very clear and stringent rules about what qualifies as a mathematical
proof. Two economists may debate vigorously about economic truth: One could make a case that
raising taxes would improve the economy, while the other one might argue that lowering them
would have that effect. A prosecution lawyer might try to convince a jury that the accused broke
the law, while a defence lawyer would argue that he didn’t. In contrast, mathematicians do not
have unsettled debates about the truth of propositions.1 If a proposition is claimed to be true,
it better come with a proof. Any mathematician (with sufficient training in his or her specialty)
ought to be able to verify this proof as correct.

While verifying the correctness of a proof is a skill you can master with some effort and self-
discipline, creating proofs is a completely different story. Mathematics is full of propositions that
nobody knows how to prove. For some, like Goldbach’s conjecture, the search for a proof has been
going on for hundreds of years. In 1998 the Clay Mathematics Institute collected seven famous
propositions and offered a 1 million US Dollar prize for each proof. So far only one has been proven.
(The prize money was refused.)

Coming up with proofs is not completely dark magic. There are general guidelines for what kind of
strategy might help with what type of proposition. However, it is important to remember that —
unlike, say, the recipe you learn in school for calculating square roots — these are not guaranteed
to succeed.

1 What is a proof?

A proof of a proposition is a sequence of logical deductions from axioms and previously proved
propositions that concludes with the proposition in question.

Instead of trying to explain, in general, what axioms and logical deductions are, let us see an
example of a proof. Do not worry how someone came up with this proof. For now, let’s just
contemplate it.

First we need to state the proposition that we intend to prove. A proposition for which a (correct)
proof is given is called a theorem. Before we state our theorem, we need to define a few concepts
that will show up in it.

The theorem I have in mind is about friendships. Let’s call two people strangers if they are not
friends. A group of friends is a collection of people in which every two of them are friends, and a
group of strangers is a collection of people in which every two are strangers.

1Mathematicians do argue about all sorts of things, it is just that the truth of propositions is not one of them.
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Theorem 1. Every collection of 6 people includes a group of 3 friends or a group of 3
strangers.

Proof. Let a denote one of the six people. The proof is by case analysis. We consider
two cases:

• Case 1: a is friends with at least 3 other people in the collection.

• Case 2: a is a stranger to at least 3 other people in the collection.

One of these two cases must hold: There are 5 people besides a, and these are divided
into friends of a and strangers to a. The bigger group has at least 3 people.

Now let’s discuss Case 1. Let’s give the collection of people who are friends with a a
name – call it F . We consider two subcases:

• Subcase 1.1: At least two people within F are friends. Let’s call them b and c.
Then a, b, and c form a group of 3 friends.

• Subcase 1.2: No two people within F are friends. Take any three people in F .
They form a group of 3 strangers.

We conclude that the Theorem holds in Case 1.

We are left with Case 2. Let’s give the collection of people who are strangers to a a
name – call it S. We consider two subcases:

• Subcase 2.1: At least two people within S are strangers. Let’s call them b and
c. Then a, b, and c form a group of 3 strangers.

• Subcase 2.2: No two people within S are strangers. Take any three people in S.
They form a group of 3 friends.

The theorem also holds in Case 2, and so it holds in all the cases.

Theorem 1 talks about collections of people and friendships among people. The axioms are true
propositions about collections and friendships that we view as self evident. For example, two axioms
about friendships are

Axiom 1. For every person x, x is not friends with x.

Axiom 2. For any two people x and y, if x and y are friends, then y and x are also friends.

Axioms about collections of people might say things like

Axiom 3. For all collections X and Y , if Y has more people then X, then there exists a person
in Y that is not in X.

Axiom 4. For all collections X and Y ,

(number of people in X or Y ) ≤ (number of people in X) + (number of people in Y ).
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Let us now look at the proof. The first sentence says “Let a denote one of these six people”. Who
is this a? it is some fixed person – could be Alice, could be Bob – someone in the collection. How
do we know that this a exists? Well, clearly we have six people so we can take one of them. Indeed,
this follows from one of our axioms. Can you tell which one?

The second sentence says “The proof is by case analysis.” Case analysis is a logical deduction rule.
It says that we can prove a proposition P like this: Split all logical possiblities into two cases C1

and C2, prove that C1 and C2 cover all possiblities, prove that C1 implies P , and prove that C2

implies P .

C1 or C2 C1 −→ P C2 −→ P

P

It should be clear that this deduction rule is sound – it only proves true statements – but if in
doubt you can always write out a truth table. Let’s do it just this once. Here, ? is shorthand for
(C1 or C2) and (C1 −→ P ) and (C2 −→ P ).

P C1 C2 ? ? −→ P

T T T T T
T T F T T
T F T T T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

Next, the proof has to tell us what the two cases (C1 and C2) are. Here, C1 is the predicate “a is
friends with at least 3 people” and C2 is the predicate “a is strangers to at least 3 people.”

Now, we expect to be given proofs of the predicates C1 or C2 (the cases cover all possibilities),
C1 −→ P (the theorem holds in case 1) and C2 −→ P (the theorem holds in case 2). By the case
analysis deduction rule, once we validate these proofs we’ll be sure to have a valid proof.

Let’s start with C1 or C2. This says “a is friends with 3 people, or a is strangers with 3 people”.
The next sentence explains why this must be true: Among the friends of a and the strangers of a
there are at least 5 people, so the bigger of the two groups must contain at least 5/2 = 2.5 people.
As 2.5 is not an integer, there must be at least 3 people in one of the two groups.

This appears like a sensible argument – but how does it, exactly, follow from our axioms? We will
see so shortly. For now let us “package” this intermediate statement C1 or C2 as a lemma and
give its proof later, which we must:

Lemma 2. For every collection of six people, and every person a within that collection,
a is friends with at least three people or a is strangers to at least three people.
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A lemma is just like a theorem – a proposition with a proof. Usually, the theorems are the ones
we are really interested in, and lemmas are intermediate propositions that are used in the proofs
of theorems or of other lemmas.

Chugging along, now comes the proof of the theorem in Case 1. For this part, we can assume C1:
a is friends of at least 3 people. You can think of it as another axiom, but just for this part of
the proof. We divide C1 into two subcases: Those 3 contain a pair of friends (C11), or they are all
strangers to one another (C12). Clearly, C11 or C12 always holds. Next, we see that C11 implies
the theorem (analysis of Subcase 2.1) and C12 implies the theorem (anaysis of Subcase 2.2). So the
theorem holds in all subcases of Case 1.

The last part of the proof is structurally similar: By the same type of reasoning, the theorem is
shown to hold in all subcases of Case 2. A mathematics book may omit this part altogether and
say “Case 2 is proved analogously to Case 1”. Before you become practiced at proofs, I suggest
that you refrain from doing this and work out all the cases in detail.

Before we embark on the challenging task of discovering proofs, let us have one final word about
axioms. What, exactly, are we allowed to assume as an axiom or as a previously proved proposition
when we prove a theorem? For us, this will consist of the “common sense” facts you have learned in
school, as well as propositions we have previously proved in class. For example, if you are asked to
prove a theorem in your homework, it is okay to use Theorem 1 as a previously proved statement.

In the beginning of the 20th century logicians spent considerable effort trying to agree on a small
collection of axioms that ought to be enough to prove all known mathematics. One of the proposals
are the so-called ZFC axioms of set theory; you can read about them in the textbook. While,
in principle, you can write any proof relying on just these nine axioms, in practice deriving a
proposition as simple as 1 + 1 = 2 from the ZFC axioms may take dozens of pages of proof and
explanations, so we won’t be doing that.

2 How to prove it

Let’s start by proving a simple theorem:

Theorem 3. The sum of two even integers is even.

How do we go about proving such a theorem? First, let us unwind this statement in terms of
quantifiers:

For all integers m and n, if m is even and n is even, then m + n is even.

This is a universal statement about two integers, which we call m and n. We need to show that
following implication:

(m is even) and (n is even) −→ (m + n is even).
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Let’s assume that m is even and n is even. This means there exist integers a and b such that
m = 2a and n = 2b. But then m + n = 2a + 2b = 2(a + b), so m + n is also twice an integer, and
therefore even.

This is a common method for proving a statement of the form “If P then Q”. We assume P , do a
bit of reasoning, see what consequences we get, and eventually hope to end up with Q.

Once you figured out the reasoning, here is how you may write this proof:

Proof of Theorem 3. Let us call the two integers m and n. Assume m is even and n is even. Then
there exist integers a and b such that m = 2a and n = 2b. It follows that m + n = 2a + 2b =
2(a + b) = 2c, where c = a + b. Therefore m is also even.

Let’s do another one:

Theorem 4. The product of two odd integers is odd.

We follow the same pattern.

Proof. Call the integers m and n. Since m and n are both odd, we can write m = 2a + 1 and
n = 2b + 1 for some integers a and b. Then

mn = (2a + 1)(2b + 1) = (2a)(2b) + 2a + 2b + 1 = 2(2ab + a + b) + 1 = 2c + 1

where c = 2ab + a + b. It follows that mn is also odd.

In these examples, the path to the proof was clear; we just need to move along (and avoid making
mistakes in the process). Other times we need to do some “scratch work,” that is reasoning which
won’t make it into the proof but helps us figure things out. Here is one such example:

Theorem 5. The square of an odd number is of the form 8k + 1 for some integer k.

Let’s call our number n. Since n is odd, we can write n = 2t + 1 for some integer t. Then

n2 = (2t + 1)2 = 4t2 + 4t + 1.

Why should this be of the form 8k + 1? We want to show that given t, we can always find a k such
that

4t2 + 4t + 1 = 8k + 1

which we can simplify to t2 + t = 2k. Namely, we are now left to show that t2 + t is always even.
To make sure we are on the right track, we can try some examples: 12 + 1 = 2, 22 + 2 = 4 + 2 = 6,
32 + 3 = 9 + 3 = 12, all even.

It seems there are two cases: t is even, in which case so is t2 and also t2 + t, or t is odd, in which
case so is t2, and so t2 + t is also even. This covers all possibilities. We now need to summarize
them nicely into a proof.

Before we do so, let’s revisit the last step and see if there is an easier way to explain why t2 + t is
always even. If we factor this expression, we get t2 + t = t(t + 1). Now if t is even, so is t(t + 1),
and if t is odd, then t + 1 is even and so is t(t + 1). This simplifies our case analysis a bit.
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Proof of Theorem 5. Assume n is odd, so we can write n = 2t + 1 for some integer t. Then

n2 = (2t + 1)2 = 4t2 + 4t + 1 = 4t(t + 1) + 1

We now prove the theorem by case analysis.

• Case 1: t is even. Then we can write t = 2r for some r and 4t(t+1)+1 = 8r(t+1)+1 = 8k+1
for k = r(t + 1).

• Case 2: t is odd. Then t+ 1 = 2r for some r and 4t(t+ 1) + 1 = 8tr + 1 = 8k + 1 for k = tr.

The two cases cover all possibilities and the claim holds in each case.

Here is another one where some scratch work of a different sort is helpful:

Theorem 6. If x is a real number with 0 ≤ x ≤ 2, then −x3 + 4x + 1 > 0.

This is a universal statement and there are infinitely many x to check, so we need to be a bit
clever here. Fortunately, we live in an age of computers so we start by plotting the graph of
f(x) = −x3 + 4x + 1:

x

f(x)

This picture is not a proof; we must derive the theorem by logical deduction. So where do we start?

From the picture we can see that in the range of interest 0 ≤ x ≤ 2, f(x) is not only greater than
zero, but always exceeds 1, namely

If 0 ≤ x ≤ 2, then −x3 + 4x + 1 ≥ 1.

The statement −x3 + 4x+ 1 ≥ 1 is the same as −x3 + 4x ≥ 0. But now we can factor the left hand
side as

−x3 + 4x = x(4− x2) = x(2− x)(2 + x).

When x is between 0 and 2, all of the terms x, 2− x, 2 + x are nonnegative, and so must be their
product. There!

We are not finished yet – we must now summarize our conclusions neatly into a proof with clear
logical deductions.
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Proof of Theorem 6. Assume x is a real number such that 0 ≤ x ≤ 2. Then all of the numbers x,
2− x, and 2 + x must be nonnegative. It follows that x(2− x)(2 + x) ≥ 0. Multiplying out the left
hand side, we obtain −x3 + 4x ≥ 0. Therefore −x3 + 4x + 1 ≥ 1 > 0, as claimed.

3 Some proof patterns

The contrapositive

The contrapositive of a proposition of the form P −→ Q is the proposition (not Q) −→ (not P ).
The two are logically equivalent. You can draw your own truth table to verify this.

A number r is rational if we can write r = n/d where both m and n are integers, e.g. 1/2, 3/2,
5/17, 8/16. A number is irrational if it is not rational.

Theorem 7. Assume r ≥ 0. If r is irrational, then
√
r is irrational.

Let us try to prove this theorem. We assume r is irrational. So r cannot be written as a fraction
n/d for any integers n and d. Where do we go from here? An assumption like this doesn’t tell us
much about

√
r, so it is not clear how to reach any conclusion about it. Instead, let us try the

contrapositive:

Assume r ≥ 0. If
√
r is rational, then r is rational.

This is now much easier to prove.

Proof of Theorem 7. We prove the contrapositive. Assume r ≥ 0 and
√
r is rational. Then we can

write
√
r = n/d for some integers n and d. It follows that r = n2/d2, and so r is also rational.

Proving equivalences

A common way to prove a statement of the form P iff Q, that is, an equivalence, is to prove
separately that P implies Q and that Q implies P :

P −→ Q Q −→ P

P iff Q

Here is an example.

Theorem 8. For every integer n, n2 is even if and only if n is even.

Proof. First, we prove that if n is even then n2 is even. If n is even, we can write n = 2k for some
integer k, so n2 = 4k2 = 2(2k2), which is also even.

Now, we prove that if n2 is even then n is even. We prove the contrapositive: If n is odd, then n2

must also be odd. In Theorem 5 we showed that if n is odd then n2 is of the form 8k+1 = 2(4k)+1,
which is an odd number.
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Proof by contradiction

Say you want to prove a proposition P . In a proof by contradiction, you start by assuming P is
false, and then you deduce that this assumption applies a falsehood. So P must have been true:

(not P ) −→ F

P

We will now prove Lemma 2 using this method. Recall what the lemma says:

For every collection of six people, and every person a within that collection, a is friends
with at least three people or a is strangers to at least three people.

In the proof, we will assume the negation of the statement, and then show that something false
must follow.

Proof of Lemma 2. Assume, for contradiction, that there exists a collection of six people and a
person a within that collection such that a is friends with at most two people and a is strangers
with at most two people. Then the number of people in the collection that are friends with a or
strangers to a is at most four (by Axiom 4). These make up all people in the collection apart
from a. Therefore the collection has at most five people. This contradicts our assumption that the
collection consists of six people.

Here is a famous example:

Theorem 9.
√

2 is irrational.

This is a universally quantified statement: For all n and d, we cannot write
√

2 as n/d. You could
try different choices of n and d and see for yourself that they don’t work. Where to go from here?

Proof. Assume, for contradiction, that
√

2 is rational. Then we can write
√

2 = n/d where n and
d are integers. Furthermore, let’s take n and d so that they have no common factor greater than
1, so the fraction is written in lowest terms.

Squaring both sides, we obtain 2 = n2/d2 and so n2 = 2d2. So n2 is even. Then n must also be
even (by Theorem 8), and so n2 is a multiple of 4. Because 2d2 = n2, d2 must be even, so d is also
even.

We conclude that both n and d are even. But we assumed that they have no common factor greater
than 1. This contradicts our assumption that

√
2 is rational.

Proofs by contradiction can be confusing because you begin by assuming a statement that is, in
fact, false. So some of the statements you will be making inside the proof will also be false. You
need to keep in mind at all times that you are operating under a false assumption, and intermediate
claims, like “d is even”, are only true within that context. Because of this confusion, I generally
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recommend proofs by contradiction only as a last resort, when all your other attempts at a proof
have failed.

In some cases, a proof by contradiction can be rewritten as a proof by contrapositive. Lemma 2 is
one such example. Can you prove this lemma using the contrapositive?

Experiment and don’t give up easily!

When you start out trying to prove a theorem, you rarely know what is the right method ahead
of time. So play around, experiment, backtrack, and don’t be afraid. The “correct” approach will
often reveal itself after a few trials and errors.

Theorem 10. There exist irrational numbers a and b such that ab is rational.

Where do we start? Let’s try some examples. Well, the only number we know for sure is irrational

is
√

2, so let’s try setting a =
√

2 and b =
√

2. Is
√

2
√
2

rational or irrational? It looks pretty
irrational to me, so it doesn’t seem that this should work out.2

Ah, but if
√

2
√
2

is irrational, then we have one more irrational number to play with. So why don’t

we try a =
√

2
√
2

and b =
√

2
√
2
. Then

ab =
(√

2

√
2
)√2√2

=
√

2

√
2·(
√
2)

√
2

=
√

2

√
2
√
2+1

What a mess! Let’s backtrack and try instead a =
√

2
√
2

and b =
√

2. Then

ab =
(√

2

√
2
)√2

=
√

2
(
√
2)2

=
√

2
2

= 2

which is a rational number! Let’s summarize this reasoning into a proof.

Proof. The proof is by case analysis.

Case 1:
√

2
√
2

is rational. In this case, the theorem is true for a =
√

2 and b =
√

2.

Case 2:
√

2
√
2

is irrational. In this case, the theorem is true for a =
√

2
√
2

and b =
√

2 because
ab = 2.

This type of proof is sometimes called a win-win proof. It doesn’t matter if
√

2
√
2

is rational or not.
In either case you win. You may not always get this lucky, but it doesn’t hurt to try.

2This part of the argument is not conclusive: “It looks pretty irrational” doesn’t make a number irrational.
Perhaps we’ll come back to it later, but we might as well try something easier first.
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4 How to write and present a proof

For this class, it is not enough that you know how to come up with proofs. You must also write
and present them properly. Writing a proof is not easy. On the one hand the proof must be clear
and precise. On the other hand, it should be easy to read and understand (by humans, not by
machines). For general advice on how to write proofs, see Section 2.7 in your textbook.

Presenting a proof to others is also challenging. Your listeners may not be familiar with the
notation. Steps in the proof that are obvious to you may take longer for others to grasp. So start
from the beginning and go slowly; do not introduce too many new concepts at once; give examples
along the way; and encourage questions from your audience.
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