
ENGG 2440A: Discrete Mathematics for Engineers Lecture 4
The Chinese University of Hong Kong, Fall 2015 5 and 7 October 2015

Number theory is the branch of mathematics that studies properties of the integers. It is full of
conjectures (propositions that have not been proven and have not been refuted) that are very simple
to state, but extremely difficult to resolve. We’ll stick to a lighter side of number theory that gives
us a nice playground to exercise the concepts we just learned – logic, proofs, induction, invariants.
We’ll also see how this concepts help us figure out correctness and termination of algorithms.

1 Die hard, once and for all

You are standing next to a water source. You have two empty jugs: A 3 litre jug and a 5 litre jug
with no marks on them. You must fill the larger jug with precisely 4 litres of water. Can you do
it?

This scenario is straight out of the 1995 classic “Die Hard 3: With a Vengeance” featuring Bruce
Willis and Samuel L. Jackson. Should they fail to complete this task within 5 minutes, a bomb
goes off and New York City is obliterated. In the nick of time, Bruce and Samuel come up with a
solution:

small jug large jug action

— — fill up large jug from source
— 5` fill up small jug from large jug
3` 2` empty small jug
— 2` pour large jug contents into small jug
2` — fill up large jug from source
2` 5` fill up small jug from large jug
3` 4` done!

The rumour is that in the sequels, Bruce and Samuel will be asked to measure — always 4 litres
— with a 21 litre and a 26 litre jug; with an 899 litre and 1,147 litre jug; and finally, in the last
movie of the series, “Die once and for all”, with a 3 litre and 6 litre jug. What should they do? To
help them out, let us first come up with a mathematical model of their problem.

The water jug problem. Let a, b be two positive integers with and v be another positive integer.
Given two initially empty jugs – jug A and jug B – with capacities a litres and b litres, respectively,
and an infinite source of water, does there exist a sequence of pouring steps so that one of the jugs
ends up with v litres of water?

To be precise, let us clearly specify the rules for pouring water:

Rules for pouring water. We are allowed to perform the following steps:

1. Empty out a jug: The emptied out jug now contains 0 litres. The contents of the other jug
stay the same.

1



2

2. Fill up a jug from the source: The filled up jug now contains as much water as its capacity.
The contents of the other jug stay the same.

3. Transfer water between jugs: Water can be poured from jug X into jug Y until jug Y is
full or jug X is empty.

Greatest common divisors and integer combinations

Let a, b be two integers. We say a divides b if ak = b for some integer k. For example, 2 divides 4
and −6 but 2 does not divide 5; 4 does not divide 2; and every number divides zero.

The greatest common divisor (GCD) of two integers a, b is the largest integer k so that k divides
a and k divides b. We write gcd(a, b) for the GCD of a and b. For example, gcd(2, 6) = 2,
gcd(4, 6) = 2, gcd(3, 5) = 1.

A number c is an integer combination of a and b if there exist integers s and t such that c = s·a+t·b.
For example,

• 2 is an integer combination of 2 and 6 because 2 = 1 · 2 + 0 · 6.

• 2 is an integer combination of 4 and 6 because 2 = (−1) · 4 + 1 · 6.

• 1 is an integer combination of 3 and 5 because 1 = 2 · 3 + (−1) · 5.

It looks like GCDs and integer combinations are closely related. This is not an accident.

Lemma 1. For all integers a and b, gcd(a, b) divides every integer combination of a and b.

Proof. Let c be an integer combination of a and b. Then we can write

c = s · a + t · b (1)

for some integers a and b. Since gcd(a, b) divides a, we can write a = a′ · gcd(a, b) for some integer
a′. Since gcd(a, b) divides b, we can write b = b′ · gcd(a, b) for some integer b′. Substituting into (1)
this gives

c = s · a′ · gcd(a, b) + t · b′ · gcd(a, b) = (sa′ + tb′) · gcd(a, b).

Therefore gcd(a, b) divides c.

An invariant

We can now state an invariant about the die hard problem:

Lemma 2. The amount of water in each jug is always an integer combination of a and b.



3

Proof. We prove this lemma by induction on the number of pourings n.

Base case n = 0: Initially, each jug has 0 liters of water and 0 = 0 · a + 0 · b.

Inductive step: Assume the amount of water in each jug is an integer combination of a and b
after n pourings. Specifically, assume jug A has x = s1a + t1b liters and jug B has y = s2a + t2b
litres. We consider cases depending on the action taken in the (n + 1)st pouring:

• Case 1. One of the jugs is emptied: Then the emptied jug has 0 litres and the other one has
the same amount of water it had before. They are both integer combinations of a and b.

• Case 2. One of the jugs is filled up from the source. We consider two subcases: If jug A is
filled up from the source, then jug A has a litres and a = 1 · a + 0 · b. The contents of jug B
don’t change, so their contents are both integer combinations of a and b. If jug B is filled up
from the source, the argument is analogous.1

• Case 3. Water is poured from one jug into the other. We consider three subcases:

– Water is poured from A to B and A becomes empty. Then B will have x + y litres of
water and x + y = (s1 + s2)a + (t1 + t2)b, which is an integer combination of a and b.

– Water is poured from A to B and B becomes full. Then A will have x + (b − y) litres
of water remaining and x + (b − y) = (s1 − s2)a + (t1 − t2 + 1)b, which is an integer
combination of a and b.

– Water is poured from B to A. The argument is analogous to the previous two cases.

It follows that in all cases, the amount of water in each jug is an integer combination of a and b
after n + 1 pourings.

Now from Lemma 14 and Lemma 1, we can obtain a useful corollary:

Corollary 3. gcd(a, b) always divides the amount of water in each jug.

In particular, if we have a 3 litre jug and a 6 litre jug, we can never end up with 4 litres of water:

Corollary 4. In “Die once and for all”, Bruce dies.

2 Euclid’s algorithm

Euclid’s algorithm is a procedure for calculating the GCD of two positive integers. It was invented
by the Euclideans around 3,000 years ago and it still the best known procedure for calculating
GCDs. To explain Euclid’s algorithm, we need to recall division with remainder.

Theorem 5. Let n and d be integers with d > 0. There exists unique integers q and r such that

n = q · d + r and 0 ≤ r < d.

1“Analogous” means that it follows by the exact same logic as the previous case by a change of notation. Writing
it out and reading through it is tedious, but you should be comfortable doing this if the need arose.



4

For example, if n = 13 and d = 3, we can write 13 = 4 · 3 + 1. Moreover, q = 4 and r = 1 are
unique assuming r is in the range 0 ≤ r < d.

The number q can be calculated using the usual “division rule” you learn in school (stopping at
the decimal point). The number r is the remainder you obtain after you subtract qd from n.

Proof. First, we show existence: Let q be the largest integer such that qd ≤ n. That means
(q + 1)d > n. Then 0 ≤ n− qd < d. Set r = n− qd.

Now we show uniqueness: Suppose we can write n in the desired form in two different ways:

n = qd + r, 0 ≤ r < d

n = q′d + r′, 0 ≤ r′ < d.

Then qd + r = q′d + r′, so (q − q′)d = r′ − r. Therefore r′ − r divides d. Since 0 ≤ r, r′ < d we
must have −d < r′− r < d. The only number in this range that divides d is zero, so r′− r = 0 and
q′ − q = 0. It follows that q′ = q and r′ = r, so the two representations are the same.

Euclid’s algorithm is a recursive algorithm for calculating the GCD of positive integers.

Euclid’s algorithm E(n, d), where n, d are integers such that n > d ≥ 0.
If d = 0, return n.
Otherwise, write n = qd + r where 0 ≤ r < d. Return E(d, r).

Let’s apply Euclid’s algorithm to calculate the GCD of 1147 and 899:

E(1147, 899) = E(899, 248) because 1147 = 1 · 899 + 248

= E(248, 155) because 899 = 3 · 248 + 155

= E(155, 93) because 248 = 1 · 155 + 93

= E(93, 62) because 155 = 1 · 93 + 62

= E(62, 31) because 155 = 1 · 93 + 62

= E(31, 0) because 62 = 2 · 31 + 0

= 31.

How can we be sure that Euclid’s algorithm indeed outputs the GCD of n and d? How can we even
be sure that Euclid’s algorithm terminates? This is a theorem that we will have to prove:

Theorem 6. For every pair of integers n, d such that n > d ≥ 0, E(n, d) terminates and outputs
gcd(n, d).

To prove this theorem, we’ll need a little lemma.

Lemma 7. For all integers a, b, and t, gcd(a, b) = gcd(a + tb, b).



5

Proof of Theorem 11. We will prove the theorem by strong induction on d.

Base case: When d = 0, the algorithm returns n = gcd(n, 0) and terminates.

Inductive step: Now assume the algorithm terminates and outputs gcd(n, d′) for all input pairs
(n, d′), where n > d′ and 0 ≤ d′ ≤ d. Consider what the algorithm does on input (n, d+1): It writes
n = q(d+1)+r with 0 ≤ r < d+1 and returns E(d+1, r). By our inductive assumption, E(d+1, r)
must terminate since r is between 0 and d and E(d+1, r) outputs gcd(r, d+1). Therefore, E(n, d+1)
must terminate as well. Moreover, E(n, d + 1) outputs gcd(r, d + 1) = gcd(n− q(d + 1), d + 1). By
Lemma 7, this number equals gcd(n, d + 1).

Proof of Lemma 7. We will show that, for every integer k, k divides a and b if and only if k divides
a+tb and b. In particular, this means that the largest divisors of the two pairs of numbers – namely,
their GCDs – must be equal.

First, assume k divides both a and b. Then we can write a = a′k and b = b′k for integers a′, b′. We
get that a + tb = (a′ + tb′)k, so k also divides a′ + tb′.

For the other direction, assume k divides both a + tb and b and write a + tb = a′k and b = b′k for
integers a′, b′. Then a = a′k − tb′k = (a′ − tb′)k, so k also divides a.

3 How to solve any water jug problem

Corollary 3 is sufficient condition for Bruce to die: If gcd(a, b) is not 1, 2, or 4, then Bruce dies.
This happens in the 3 litre + 6 litre scenario, as well as the 1147 litre + 899 litre one. What if we
have a 21 litre and a 26 litre jug? The GCD of 21 and 26 is 1, so Corollary 3 does not rule out the
possibility that Bruce may survive. But can he, actually, survive?

The key to survival is the following converse to Lemma 1.

Lemma 8. Let a, b be any two nonnegative2 integers. Then gcd(a, b) can be written as an integer
combination of a and b.

Corollary 9. Let a, b be any two positive integers. Then there exist nonnegative integers s and t
such that gcd(a, b) = s · a− t · b.

Proof of Corollary 9. By Lemma 8, there exist integers s and t such that gcd(a, b) = s · a + t · b.
Then for every integer k,

(s + kb) · a + (t− ka) · b = sa + tb = gcd(a, b).

No matter what the values of s and t are, when k is sufficiently large, s + kb is positive and t− ka
is negative. This gives us a representation of gcd(a, b) of the desired form.

2The assumption that the integers are nonnegative is not important; in fact, it is not necessary, but we will make
it because it makes the arguments a bit simpler.



6

For example, if a = 21 and b = 26, then gcd(21, 26) = 1 and we can write

1 = 5 · 21 − 4 · 26.

Multiplying both sides by 4, we get

4 = 20 · 21 − 16 · 26.

Now here is how Bruce can handle a 21 litre and a 26 litre jug: Keep filling up the 21 litre jug for
a total of 20 times. Whenever it becomes full, pour all the water into the 26 litre jug. If that one
becomes full, empty it out and continue pouring into it.

At the end, the 26 litre jug will contain exactly 4 litres. Here is why: We poured a total of 20 · 21
litres from the source, and some multiple of 26 litres out of the larger jug, so the amount of water
left in the larger jug is of the form 20 · 21 − t · 26. Let’s see what these numbers look like:

t · · · 14 15 16 17 18 · · ·
20 · 21 − t · 26 · · · 56 30 4 −22 −48 · · ·

So there must be 4 liters left in the 26 liter jug: This is the only number in the list which is within
the capacity of the jug!

We can now specify the exact conditions under which the water jug problem has a solution:

Theorem 10. Assume a, b, v are positive integers and a ≤ b. The water jug problem with jugs of
capacity a and b and target v has a solution if and only if gcd(a, b) divides v and 0 ≤ v ≤ b.

Proof. Assume the water jug problem has a solution. By Corollary 3, gcd(a, b) must divide v.
Clearly v must also be within the size of the larger bin.

Now assume v is a multiple of gcd(a, b) and 0 ≤ v ≤ b. The cases v = 0 and v = b are easy, so from
here on we’ll assume 0 < v < b. By Corollary 9 we can write

gcd(a, b) = sa− tb

for some nonnegative integers s, t. Since v divides gcd(a, b), we can write v = kgcd(a, b) for some
k and

v = (ks)a− (kt)b.

To obtain v litres, we proceed like this: Keep filling jug A for a total of ks times. Whenever it
becomes full, pour all the water into jug B. If that one becomes full, empty it out and continue
pouring into it.

Suppose jug B was emptied a total of t′ times. Then the amount of water left inside jug B in the
end is

(ks)a− t′b = (ks)a− (kt)b + (kt− t′)b = v + (kt− t′)b

If kt− t′ < 0, this number is negative; if kt− t′ > 0, then it is larger than b. In either case, this is
not a valid amount of water to be left in jug B. It must be that kt− t′ = 0 and there are exactly v
litres left in jug B.



7

In fact, we do not need to fill jug A exactly ks times; we can interrupt the procedure as soon as we
get 4 litres into jug B. I wrote a program that implements this strategy. You can play with it.

We are almost done – all that remains is to prove Lemma 8. This follows by analysing an extension
of Euclid’s algorithm, which we won’t do here. The purpose of the extended Euclid’s algorithm is
to compute the numbers s and t from Lemma 8.

Extended Euclid’s algorithm X(n, d), where n, d are integers such that n > d ≥ 0.
If d = 0, return (1, 0).
Otherwise,

Write n = qd + r where 0 ≤ r < d.
Calculate (s, t) = X(d, r).
Return (t, s− q · t).

Lemma 8 is now a consequence of the following Theorem:

Theorem 11. For every pair of integers n, d such that n > d ≥ 0, X(n, d) terminates and outputs
a pair of integers (s, t) such that s · n + t · d = gcd(n, d).

4 Prime numbers

I am sure you already know quite a bit about prime numbers, so let me just state two useful facts.
If you want to read the proofs, you can find them in the textbook.

Lemma 12. If p is a prime and p divides a · b, then p divides a or p divides b.

Theorem 13 (Fundamental theorem of arithmetic). Every positive integer n can be written uniquely
as a product of primes.

For example, 15 = 3 · 5, 8 = 2 · 2 · 2, 12 = 2 · 2 · 3, and 17 = 17.

5 Modular arithmetic

Let’s fix an integer p, which we will call the modulus. Theorem 5 says that for every integer n
there exists a unique integer between 0 and p − 1 such that n = qp + r for some q. We call r the
remainder of n modulo p — in short n modulo p — and we write

r = n mod p.

We can do arithmetic using the numbers 0, 1, . . . , p − 1: additions, subtractions, multiplications,
divisions. The arithmetic remains valid as long as we take the remainders of all expressions modulo
p. Taking remainders all the time is tedious so instead we’ll take advantage of the concept of
congruence: Two integers m and n are congruent modulo p if p divides m − n. We write m ≡ n



8

(mod p) for “m and n are congruent modulo p.” Congruences behave nicely with respect to
additions and multiplications:

If x ≡ x′ (mod p) and y ≡ y′ (mod p), then x + y ≡ x′ + y′ (mod p)

and x · y ≡ x′ · y′ (mod p).

Addition and subtraction Addition and subtraction modulo p is fairly easy: For example, if I
want to calculate 3 + 8 modulo 9 first I add 3 and 8 as integers to get 11 then I take the remainder
of 11 modulo 9 to get 2:

(3 + 8) mod 9 = 11 mod 9 = 2.

The additive inverse of a modulo p is the number (−a) mod p. Say the modulus is 5. Then the
additive inverse of 0 is 0, the additive inverse of 1 is 4, the additive inverse of 2 is 3, and vice versa.
Subtraction can then be done by replacing each negative number with its additive inverse.

(3 − 7) mod 8 = (3 + 1) mod 8 = 4 mod 8 = 4.

Multiplication and division From here on we will assume that the modulus p is a prime
number. (If it isn’t, some of the following statements won’t be true.) Just like addition, to multiply
two numbers modulo p, first we multiply them as integers and then we take the remainder modulo
p, for example

3 · 4 mod 7 = 12 mod 7 = 5.

What about division? First, let’s show how to calculate multiplicative inverses, namely ratios of
the form 1/x. This is more commonly written as x−1. Division by zero is forbidden, but otherwise
we have a nice lemma:

Lemma 14. For every x between 1 and p− 1 there exists a unique y between 1 and p− 1 such that
xy ≡ 1 (mod p).

Proof. First we show existence of y. Take any x between 1 and p−1. Since p is prime, gcd(x, p) = 1.
By Lemma 8 there exist integers s, t for which s · x+ t · p = 1. Taking both sides modulo p, we get
that s · x ≡ 1 (mod p). Take y = s mod p. Then y · x ≡ s · x (mod p), so y · x ≡ 1 (mod p).

Now we show uniqueness. We just saw that for every x between 1 and p− 1 there is at least one y
in the same range such that xy ≡ 1 (mod p). Now we show there is at most one such y. Suppose
xy ≡ 1 (mod p) and xy′ ≡ 1 (mod p). Then x(y − y′) ≡ 0 (mod p), so p divides x(y − y′). By
Lemma 12, p divides x or p divides y−y′. Since x < p, p must divide y−y′. But y−y′ is a number
between −(p− 2) and p− 2, so this is only possible if y = y′, namely y − y′ = 0.

The proof of Lemma 14 not only tells us that x−1 exists, but also how to calculate it: First, use the
Extended Euclid’s algorithm to find s and t such that s · x + t · p = 1. Then output s mod p. For
example, to get the multiplicative inverse of 11 modulo 17, I run X(11, 17) to get (−3, 2), namely
(−3) · 11 + 2 · 17 = 1. Therefore

11−1 mod 17 = −3 mod 17 = 14.



9

To divide two numbers, we first take the multiplicative inverse of the denominator, then multiply
by the numerator, for instance to divide 3 by 11 modulo 17 we calculate

3 · 11−1 mod 17 = 3 · 14 mod 17 = 42 mod 17 = 8.

References

This lecture is based on Chapter 4 of the text Mathematics for Computer Science by E. Lehman,
T. Leighton, and A. Meyer.


