
ENGG 2440A: Discrete Mathematics for Engineers Lecture 10
The Chinese University of Hong Kong, Fall 2015 23 and 25 November 2015

1 The division rule

In how many ways can we place two identical rooks on an 8 by 8 chessboard so that they occupy
different rows and different columns?

Let’s first count the number of configurations for two different rooks. Each configuration can then
be represented by a sequence (r1r, r1c, r2r, r2c) indicating the row and column of the first and
second rook, respectively. By the generalized product rule, the set of configurations Cdifferent has
size

|Cdifferent| = 8 · 8 · 7 · 7 = (8 · 7)2.

Now let Cidentical be the set of configurations when the two rooks are identical. We won’t count
the number of elements of Cidentical directly but take advantage of what we know already. Each
configuration in Cidentical can be naturally represented by a pair of sequences in Cdifferent. For
example, the configuration in Cidentical in which one rook is at position (1, 1) and the second one is
at (2, 3) is represented by the pair of sequences (1, 1, 2, 3) and (2, 3, 1, 1) in Cdifferent.

Since each element in Cidentical is represented by exactly two elements in Cdifferent, the set Cdifferent

must be exactly twice as large as Cidentical and so the desired number of configurations is

|Cidentical| =
|Cdifferent|

2
=

(8 · 7)2

2
.

Here is a general description of this type of counting argument. A function f : X → Y is k-to-1 if
for every y in Y , the number of x ∈ X such that f(x) = y is exactly k:

|{x ∈ X : f(x) = y}| = k for every y ∈ Y .

If we want to count the size of Y and have a k-to-1 function from X to Y where X is a set whose
size we know, we can conclude that Y has size |X|/k.

Theorem 1 (The division rule). If f : X → Y is k-to-1, then |Y | = |X|/k.

In the example we just did, f : Cdifferent → Cidentical is the function that takes the sequence
(r1r, r1c, r2r, r2c) to the configuration in which one rook is at (r1r, r1c) and the other one is at
position (r2r, r2c). Then f is a 2-to-1 map since each configuration in Cidentical is mapped to by
exactly two sequences in Cdifferent. We can conclude that |Cidentical| = |Cdifferent|/2 = (8 · 7)2/2.

Circular arrangements In how many ways can we seat n people at a round table? Two seating
configurations are the same if one can be obtained from the other by a turn of the table. Such
configurations are called circular arrangements of a set of n elements. For example, if n = 3 and
the set is {A,B,C}, there are two possible circular arrangements:
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We can count the number of circular arrangements using the division rule. Let P be the set of all
permutations of n people and C be the set of all circular arrangements of these people. For each
permutation (p1, . . . , pn), let f(p1, . . . , pn) be the circular arrangement obtained by seating person
p1 at the head of the table, p2 next to p1 clockwise, p3 next to p2 clockwise, and so on until pn.

For example, when n = 3 and the three people are A(lice), B(ob) and C(harlie), then

f maps permutations (A,B,C), (B,C,A), (C,A,B) to circular arrangement 1

and permutations (A,C,B), (C,B,A), (B,A,C) to circular arrangement 2

and we see that f is 3-to-1: The 3! = 6 permutations account for exactly 6/3 = 2 circular arrange-
ments.

For general n, f is n-to-1: The circular arrangement consisting of p1, p2, p3, up to pn in clockwise
direction is mapped to by the n permutations

(p1, p2, p3, . . . , pn), (p2, p3, . . . , pn, p1), . . . , (pn, p1, . . . , pn−2, pn−1).

Since there are |P | = n! permutations of n people and f : P → C is n-to-1, by the division rule we
conclude that there are |C| = n!/n = (n− 1)! circular arrangements of n people.

Subsets with a fixed number of elements In the last lecture we showed that a set of size n
has exactly 2n subsets. How many of those subsets are of size exactly k?

For example, a set of size 3 has 3 subsets of size 2. If the set is {1, 2, 3} those subsets are

{1, 2}, {1, 3}, and {2, 3}.

A set of size 5 has 10 subsets of size 3. If the set is {1, 2, 3, 4, 5} those subsets are

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, and {3, 4, 5}.

Counting such sets “by hand” may not be very reliable. We can do it systematically using rules
from class.

To do this, let X be the set of length k sequences of distinct numbers in the set {1, . . . , n}. For
example, when n = 3 and k = 2, X is the set

X = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

Each size 2 subset of {1, 2, 3} is represented twice by a sequence in X.

For general n and k, we can count the number of sequences in X using the generalized product
rule: There are n choices for the first entry, n−1 choices for the second entry (for each first entry),
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n − 2 choices for the third entry, and so on, until we reach the k-th entry and we are left with
n− k + 1 choices for it. By the generalized product rule,

|X| = n · (n− 1) · · · (n− k + 1).

Now let Y be the number of k-element subsets of the set {1, . . . , n} and f : X → Y be the function
that maps each k element sequence to the subset consisting of its entries:

f((a1, . . . , ak)) = {a1, . . . , ak}.

The function f is k!-to-1: Each subset is mapped to by the k! permutations of its entries.

By the division rule, we conclude that the size of Y — that is, the number of k-element subsets of
{1, . . . , n} — is

|Y | = |X|
k!

=
n · (n− 1) · · · (n− k + 1)

k!
. (1)

This is an important enough number that there is special notation for it: It is written as
(
n
k

)
(read

“n choose k”). If we multiply both the numerator and denominator of (1) by (n − k)! we get the
nice formula (

n

k

)
=

n!

k!(n− k)!
.

We just proved that

Theorem 2. The number of k element subsets of an n element set is
(
n
k

)
.

In the last lecture we gave a bijective function f from the set {0, 1}n of bit sequences of length n
to the set of all subsets of {1, . . . , n}. The function maps a bit sequence to the set of positions that
contain a one in the sequence:

f((b1, . . . , bn)) = {i : bi = 1}.

The size of the set f((b1, . . . , bn)) equals the number of one entries in the bit sequence:

|f((b1, . . . , bn))| = number of i such that bi equals one.

Therefore the map f is a bijective function from (the set of) bit sequences of length n with exactly
k ones to (the set of) subsets of {1, . . . , n} of size k. So these two sets have the same size.

Corollary 3. The number of n bit sequences with exactly k ones is
(
n
k

)
.

2 Poker hands

Five card poker is good setting in which we can practice our counting skills. In case you have never
been to a casino, a card deck consists of 52 cards; each card has one of the 13 face values 2 3 4
5 6 7 8 9 J Q K A and one of the four suits ♠,♥,♦,♣. In five card poker, you are dealt a hand
consisting of five different cards, for example

8♠ 9♦ 2♦ A♥ 2♠
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and you win a prize if your hand is of a special type. We’ll apply counting rules to figure out the
probability of various types of hands, assuming all five card hands are equally likely.

We will think of the card deck as a set of 52 cards and the hand as a 5-element subset of it, so
the number of possible hands is

(
52
5

)
= 2, 598, 960. This is a large number, so counting hands “by

hand” is impractical and we need to resort to the rules we learned.

Four-of-a-kind A hand is a four-of-a-kind if it contains four cards with the same value, for
example:

{K♠,K♥,K♦,K♣, 3♠}

How many four-of-a-kind hands are there? We can specify a four-of-a-kind sequence completely
and uniquely by giving the face value of the four-of-a-kind, the face value of the fifth card, and the
suit of the fifth card. There are 13 choices for the face value of the four-of-a-kind. Each of them
leaves out 12 choices for the face value of the fifth card and 4 choices for its suit. By the generalized
product rule, the number of four-of-a-kind hands is

13 · 12 · 4 = 624.

Assuming all five card hands are equally likely, the probability of a four-of-a-kind hand is

number of four-of-a-kind hands

number of possible hands
=

13 · 12 · 4(
52
5

) =
624

2, 598, 960
≈ 0.00024.

Flush A hand is a flush if all five cards are of the same suit,1 for example

{Q♣, 10♣, 6♣, 3♣, 2♣}

We can specify a flush uniquely by describing the suit of all the cards in it and their face values.
The suit can be chosen in 4 ways and the five face values can be chosen in

(
13
5

)
ways. By the product

rule, the number of flushes is
(

13
5

)
·4 = 5, 148. Assuming all hands are equally likely, the probability

of a flush is 5, 148/2, 598, 960 ≈ 0.00198. A flush is quite a bit more likely than a four-of-a-kind.

Full house A hand is a full house if it consists of three cards with one face value and two cards
with another face value, for example

{J♠, J♥, J♣, 6♥, 6♦}.

We can specify each full house completely and uniquely by giving the face value of the cards in the
triple, the suits of the cards in the triple, the face value of the cards in the double, and the suits
of the cards in the double. There are 13 choices for the face value of the triple,

(
4
3

)
choices for the

suits in the triple (three suits out of a set of four), 12 remaining choices for the face value of the

1In poker there is also a “royal flush” and a “straight flush” that are sometimes counted separately. We will
include those into our count of flushes.
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pair, and
(

4
2

)
choices for the suits of the cards in the pair. By the generalized product rule, the

number of full house hands is

13 ·
(

4

3

)
· 12 ·

(
4

2

)
= 13 · 4 · 12 · 6 = 3, 744.

Assuming all five card hands are equally likely, the probability of a full house is 3, 144/2, 598, 960 ≈
0.00121.

Two pairs A hand is a two-pairs if it has two cards of one face value, two cards of another face
value, and a fifth card of yet another face value, for example

{K♠,K♥, 10♠, 10♦, 3♠}.

Let us try to count the number of two-pairs hands: There are 13 choices for the face value of the
cards in the first pair and

(
4
2

)
choices for their suits; once these have been chosen, there are 12

choices for the face value of the cards in the second pair and
(

4
2

)
choices for their suits. This leaves

out 11 choices for the face value of the last card and 4 choices for its suit, giving a total of

13 ·
(

4

2

)
· 12 ·

(
4

2

)
· 11 · 4 = 247, 104.

This number is not an accurate count of the number of two-pairs. Our reasoning does not account
for every two-pair hand uniquely! For example, the above hand is counted twice: Once, we count
the pair {K♠,K♥} as a first pair and the pair {10♠, 10♦} as a second pair and the other time we
count the two pairs in the opposite order.

Fortunately, our count of 247,104 is not useless. What this number counts is the number of ordered
two-pairs, namely sequences consisting of a first pair of cards with the same face value, a second
such pair of cards with another face value, and a fifth card with a third face value. There is a 2-1
map from the set of ordered two-pairs to the set of two-pairs: The map represents each two-pair by
its two orderings. By the division rule, the number of two pairs is half the number of ordered two-
pairs, namely 247, 104/2 = 123, 552. Assuming equally likely hands, the probability of a two-pair
is 123, 552/2, 598, 960 ≈ 0.04754.

We’ll count a couple more types of hands that may be of no particular use in poker but are good
for counting practice.

All four suits How many hands are there in which each one of the four suits is represented, for
example {2♠, 3♥, 3♦, A♠, 6♣} but not {7♠, 6♣, Q♦, 10♠, 6♣} (♥ is not represented).

We can describe each such hand by specifying a sequence consisting of the face values of four cards in
four different suits (say in the order ♠,♥,♦,♣), plus a face value and a suit for the additional card.
For example, the tuple (10, A, 3, J, 5♦) would represent the hand H = {10♠, A♥, 3♦, J♣, 5♦}.
There are 13 choices for each of the first four face values; once these are fixed, there are 12 choices
for the face value of the last card and 4 for its suit, so the number of desired sequences is 134 ·12 ·4.
The function that maps a sequence to the corresponding hand is 2-1: the last card in the sequence
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can be swapped with the one of the same suit among the first four. For example, the sequence
(10, A, 5, J, 3♦) also represents the hand H. By the division rule, the number of hands in which all
four suits are represented is 132 · 12 · 4/2 = 685, 464.

At least one ace Sometimes the size of the set can be figured out more easily by looking at
its complement. How many hands are there that have at least one ace? Let A be the set of such
hands. The complement of A is the set A of hands that do not contain an ace. The sets A and A
partition all hands, so by the sum rule,

|A|+ |A| =
(

52

5

)
.

How many hands are there that do not contain an ace? Each such hand is a 5-element subset of
the 48-element set obtained by taking out the four aces from the pack of cards and so |A| =

(
48
5

)
.

Therefore

|A| =
(

52

5

)
−
(

48

5

)
= 2, 598, 960− 1, 712, 304 = 886, 656.

One good way to check your answer is to try and solve the same problem in a different way. To do
this, I wrote a computer program that counts the number of hands of a given kind by going over
all possible five-card hands and counting only those that are of the appropriate kind. The program
is a bit slow as it has to check almost 2.3 million hands each time. However it does eventually
produce answers, and they are the same as the ones we calculated using counting rules.

3 Inclusion-exclusion

The sum rule allows us to calculate the size of a union of sets as a sum of the sizes of the sets,
provided the sets are disjoint. If they are not disjoint, there is a more complicated formula called
the inclusion-exclusion rule.

Say Alice has 61 friends on Facebook, Bob has 39, and Charlie has 57. How many users are friends
with at least one of them? We don’t have enough information to answer this question since some of
their friends could be common friends. So suppose we find out that Alice and Bob have 7 common
friends, Alice and Charlie have 23 common friends, and Bob and Charlie have none. Can we answer
now?

Let A, B and C be the sets of friends of Alice, Bob, and Charlie, respectively. We want to know
the size of the set A ∪B ∪ C.

Let’s start with the size of A∪B. If we add the number of elements in A to the number of elements
in B, we have counted all the elements in A ∪ B, but the elements in the intersection A ∩ B have
been counted twice; if we subtract the size of A ∩B, we get the exact count

|A ∪B| = |A|+ |B| − |A ∩B|. (2)

So there are 61 + 39− 7 = 93 users who are friends with Alice or Bob.
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We can now calculate the size of A ∪B ∪ C by applying formula (2) a few times:

|A ∪B ∪ C| = |(A ∪B) ∪ C|
= |A ∪B|+ |C| − |(A ∪B) ∩ C|
= |A ∪B|+ |C| − |(A ∩ C) ∪ (B ∩ C)|.

To calculate |A ∪B| we apply (2) directly. For the last set,

|(A ∩ C) ∪ (B ∩ C)| = |A ∩ C|+ |B ∩ C| − |(A ∩ C) ∩ (B ∩ C)|
= |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|.

After rearranging terms, we get the inclusion-exclusion formula for three sets:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|. (3)

Plugging in the Facebook numbers, we get that |A∪B∪C| = 61+39+57−7−23−0+ |A∩B∩C|.
The set B ∩C is empty, so A∩B ∩C must also be empty. Adding all the numbers we get that 127
users are friends with at least one of Alice, Bob, and Charlie.

Avoiding patterns How many permutations of the 10 letters {a, b, c, d, e, f, g, h, i, j} are there
that do not contain any of hi, fad, and jig? For example, the permutations edafjigcb and
jghiebfadc should not be counted because the first one contains jig and the second one contains
both hi and fad.

Let A, B, and C be the sets of permutations that contain a hi, a fig, and a fad, respectively. We
will first calculate the size of A ∪ B ∪ C using the formula (3). How many elements does A have?
This set contains the permutations in which hi must appear in sequence so we can think of these
two letters as a single “symbol” that is permuted with the 8 other letters. This way we can view
A as the set of permutations of the 9-element set {a, b, c, d, e, f, g, hi, j} and |A| = 9!. Similarly we
get |B| = 8! and |C| = 8!.

The set A ∩ B contains those permutations that contain both hi and fad. We can view A ∩ B as
the set of permutations of {b, c, e, g, j, hi, fad}, so |A ∩ B| = 7!. Similarly, |B ∩ C| = 6!. The set
A ∩ C is empty because no permutation contains both hi and jig — the i must appear exactly
once. Plugging into (3) we get

|A ∪B ∪ C| = 9! + 8! + 8!− 7!− 6! = 437, 760.

We want to know how many permutations do not contain a hi, a fad, or a jig. This is the
complement of the set A ∪B ∪ C, so the desired number is

|A ∪B ∪ C| = 10!− |A ∪B ∪ C| = 3, 628, 800− 437, 760 = 3, 191, 040.

The general inclusion-exclusion principle for n sets follows the same pattern as formulas (2) and
(3): To calculate the size of the union, we add the sizes of the individual sets, subtract the sizes of
all pairs, add the sizes of all triples, and so on. The formula is more difficult to parse than the rule.
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Theorem 4. (Inclusion-exclusion formula) For any n finite sets A1, . . . , An,

|A1 ∪ · · · ∪An| =
∑

I⊆{1,...,n}

(−1)|I|+1
∣∣∣⋂

i∈I
Ai

∣∣∣.
The summation here ranges over all subsets of the indices {1, . . . , n}. For each such subset, we have
a term in the summation whose absolute value is the size of the intersection of the set with these
indices (this is the set ∩i∈IAi) and whose sign is + if I is of odd size and − if I is of even size (this
is the factor (−1)|I|+1).

Derangements Each of n people turns in their hat. In how many ways can the hats be reassigned
so that at least one person gets their own hat?

We represent the people by numbers from 1 to n and the assignment of hats to people by permuta-
tions of these numbers. For example, if n = 4, the permutation (2, 3, 1, 4) represents the assignment
in which 2’s hat is given to 1, 3’s hat is given to 2, 1’s hat is given to 3, and 4 gets their own hat.

Let Ai be the set of assignments in which person i gets their own hat. These are represented by
the permutations that fix i, namely entry i occurs in position i. The set A1 ∪ · · · ∪ An represents
those assignments in which at least one person gets their own hat. We are interested in the size of
this set.

We apply the inclusion-exclusion formula to A1 ∪ · · · ∪An. Let’s figure out the sizes of each set Ai

first. The set A1 consists of those permutations in which a 1 occurs in the first position; the other
n− 1 numbers can occur in arbitrary order in the remaining n− 1 positions, so |A1| = (n− 1)!. By
the same reasoning we can conclude that |Ai| = (n− 1)! for every index i.

Let’s now look at the pairwise |Ai ∩ Aj | and take |A1 ∩ A2| as a representative example. The set
A1 ∩ A2 contains those permutations that have a 1 in position 1 and a 2 in position 2; the other
n− 2 numbers can occur in arbitrary order in the remaining positions, so |A1 ∩A2| = (n− 2)!. By
the same reasoning, |Ai ∩Aj | = (n− 2)! for every distinct pair of indices i, j.

Continuing this line of reasoning, we get that |∩i∈IAi| = (n − 3)! for every set of indices I of size
3, (n− 4)! for every set of indices of size 4, and so on.

We now apply the inclusion-exclusion formula. There are n terms of the type |Ai|, each of which
has value (n − 1)!;

(
n
2

)
terms of the type |Ai ∩ Aj |, each of which has value (n − 2)!; and so on.

Taking care of the changes in sign, we get that

|A1 ∪ · · · ∪An| = n · (n− 1)!−
(
n

2

)
· (n− 2)! +

(
n

3

)
· (n− 3)!− . . . (+ or −)

(
n

n

)
· 0!

= n!− n!

2!
+
n!

3!
− . . . (+ or −) 1

= n! ·
( 1

1!
− 1

2!
+

1

3!
− . . . (+ or −)

1

n!

)
.

Using some calculus, it is possible to show that the number in the parenthesis equals 1− 1/e plus



9

or minus an error term that is at most 1/(n+ 1)!, so

|A1 ∪ · · · ∪An|
n!

= 1− 1

e
+ ε, where |ε| ≤ 1

(n+ 1)!
.

This formula tells us that if all hat reassignments were equally likely, the probability that someone
gets back their own hat is very close to 1− 1/e ≈ 0.63212.
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