Each question is worth 10 points. Please explain your solution clearly and concisely.

1. Is the following deduction rule valid?

$$
\frac{\forall x: P(x) \text { OR } Q(x)}{(\forall x: P(x)) \text { OR }(\forall x: Q(x))}
$$

2. Show that for every integer n, if $n^{3}+n$ is divisible by 3 then $2 n^{3}+1$ is not divisible by 3 .
3. The vertices of graph G are the integers from 1 to 20 . The edges of G are the pairs $\{x, y\}$ such that $\operatorname{gcd}(x, y)>1$. How many connected components does G have?
4. What is $1+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+1000)$?
5. An $n \times n$ plot of land (n is a power of two) is split in two equal parts by a North-South fence. The Western half is sold and the Eastern half is split in two equal parts by an West-East fence. The same procedure is applied to the remaining $(n / 2) \times(n / 2)$ plots \qquad until 1×1 plots are obtained (see $n=4$ example). How many units of fence are used?
6. A department has 10 men and 15 women. How many ways are there to form a committee with six members if it must have the same number of men and women?
7. A password is made of the digits $0,1, \ldots, 9$ and the special symbols $*$ and \#. The password must be $4-6$ symbols long and contain at least one special symbol. How many passwords are there?
8. Show that every set of 10 integers, each of them between 0 and 25 , contains two distinct subsets S, T of the same size such that the sum of the numbers in S equals the sum of the numbers in T.
