
ENGG 2440A / ESTR 2004: Discrete Mathematics for Engineers Tuesday 14 December
The Chinese University of Hong Kong, Fall 2016 Final Exam Solutions

ENGG2440A variant

1. Show that if x is irrational and y is any real number then at least one of x + y and x− y must be
irrational.

Solution: We prove the contrapositive. Assume x + y and x − y are both rational. Then so is
1
2
(x + y)− 1

2
(x− y) = x.

2. A box contains 100 black balls and 99 white balls. In each step Alice takes out two balls of the
same colour and puts in one ball of the opposite colour. Can Alice empty the box be left with
exactly one ball of each colour in the box?

Solution: No. We show that the predicate “3 divides b−w− 1” is an invariant of the underlying
state machine, where b and w is the number of black and white balls respectively. The invariant
holds initially. We now argue that it is preserved by the transitions, so assume 3 divides b−w + 1
before a given transition. There are two possibilities after the transition: Either the box contains
b−2 black and w+1 white balls, in which case (b−2)−(w+1)−1 = (b−w−1)−3 is a multiple of 3,
or the box contains b+1 black and w−2 white balls, in which case (b+1)−(w−2)−1 = (b−w−1)+3
is also a multiple of 3. Since 3 does not divide 1− 1− 1 = −1, the state in which there is exactly
one ball of each colour cannot be reached.

3. Let a and b be integers. Show that if 3 is an integer combination of 2a and b and 5 is an integer
combination of a and 2b then gcd(a, b) = 1.

Solution: If 3 is an integer combination of 2a and b, then 3 is also an integer combination of a and
b. Similarly, if 5 is an integer combination of a and 2b, then 5 is also an integer combination of a
and b. Integer combinations of integer combinations are also integer combinations, so 1 = 2·3−5 is
also an integer combination of a and b. Since gcd(a, b) must divide all their integer combinations,
gcd(a, b) divides 1, so it must be equal to 1.

4. In a group of 15 people, is it possible for each person to have exactly 3 friends? (If Alice is a friend
of Bob we assume Bob is also a friend of Alice.)

Solution: No. Suppose for contradiction this was possible. Then the sum of degrees in the
friendship graph would have been 15 · 3 = 45. But the sum of the degrees equals twice the number
of edges, which is an even number, contradicting the fact that 45 is odd.

5. Sort these three functions in increasing order of growth:
√
n · log n, n/

√
log n,

√
n · log n. For your

sorted list f, g, h show that f is o(g) and g is o(h).

Solution:
√
n log n is o(

√
n log n) because the ratio

√
n log n/

√
n log n equals 1/

√
log n, which

eventually becomes and stays smaller than any given constant.
√
n log n is o(n/

√
log n) because

the ratio
√
n log n/(n/

√
log n) equals (log n)3/2/n1/2. In Lecture 7 we showed that (log n)a is o(nb)
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2 for any constants a, b > 0, so this ratio becomes and stays smaller than any constant when n is
sufficiently large.

6. The vertices of graph H are the 20 integers from −10 to 10 except 0. The edges of H are the pairs
{x, y} such that x = −y or |y − x| = 1. How many perfect matchings does H have?

Solution: Let f(n) denote the number of matching of the analogous graph Hn with 2n vertices
in which the integers −10 and 10 are replaced by −n and n. There are two possible ways in which
vertex n can be matched: Either it is matched to −n, in which case the remaining vertices to
be matched induce the graph Hn−1, or it is matched to n − 1, in which case −n must also be
matched to −(n+ 1) and the remaining vertices to be matched induce the graph Hn−2. Therefore
the number of matchings f(n) satisfies the recurrence f(n) = f(n − 1) + f(n − 2) for all n ≥ 2.
By inspection we have that f(0) = 1 and f(1) = 1. This is exactly the same recurrence we had in
Lecture 7 and we can calculate the following values for f(n) when n ≤ 10:

n 0 1 2 3 4 5 6 7 8 9 10
f(n) 1 1 2 3 5 8 13 21 34 55 89

so f(10) = 89.

7. How many length 5 passwords are there that contain at least one digit (0, 1, . . . , 9), at least one
*, and at least one #? No other symbols are allowed.

Solution: Let A, B, and C denote the sets of length 5 strings (with the given symbols) that
contain no digits, no *, and no #, respectively. The set of passwords is the complement of the set
A ∪B ∪ C, so there is a total of 125 − |A ∪B ∪ C| passwords. By inclusion-exclusion,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
= 25 + 115 + 115 − 15 − 15 − 105 + 0

because the set A is the product set {∗,#}5, the set B ∩ C is the product set {0, 1, . . . , 9}5, and
so on. So the number of passwords is

125 − 25 − 2 · 115 + 2 + 105 = 26, 700.

8. Prove that every tree can have at most one perfect matching.

Solution: The proof is by strong induction on the number of vertices. If a tree has one vertex
then it has no perfect matching so the proposition holds. Now assume it is true for all trees with
fewer than n vertices and consider any tree T with n vertices. T must have a vertex v of degree
one. This vertex v can be matched in at most one way to its unique neighbor w. We now argue
that there exists at most one matching that covers all remaining vertices. The graph G obtained
by removing v and w from T with all their incident edges is a forest. By the inductive assumption,
each connected component of G can have at most one perfect matching, so G itself, and therefore
T also, can have at most one perfect matching.

An alternative proof is to argue the contrapositive: A union of any two distinct perfect matchings
Ξ0 and Ξ1 on the same set of vertices must contain a cycle, so Ξ0 and Ξ1 cannot both be perfect
matchings of a tree. (Distinct does not mean disjoint: Ξ1 and Ξ2 may share some edges.) To



3prove this, let v1 be any vertex that is matched differently in Ξ0 and Ξ1 and v0 be its match in Ξ0.
Consider the sequence of vertices v0, v1, v2, v3, · · · where v2 is v1’s match in Ξ0, v3 is v2’s match in
Ξ1, v4 is v3’s match in Ξ0, and so on; the matchings alternate as vertices are added. At some point
a repeated vertex vj = vi with j > i must appear in the sequence. We now argue that j 6= i + 2,
so vi, vi+1, . . . , vj−1 is the desired cycle. In fact, for every i ≥ 0, vi and vi+2 must be distinct. We
can prove this by induction on i: this is true when i = 0 by the assumption on v1, and given that
vi and vi+2 are distinct, their matches vi+1 and vi+3 must also be distinct.

ESTR 2004 variant

4. What is 14 + 24 + · · ·+ 994 mod 10?

Solution: We group the terms as follows. All congruences are modulo 10.

14 + 24 + · · ·+ 994 ≡ (04 + 104 + · · ·+ 904) + (14 + 114 + · · ·+ 914) + · · ·+ (94 + 194 + · · ·+ 994)

All terms in the k-th bracket (starting our count at zero) are congruent to k4. As there are ten
such terms in each bracket, each bracket is congruent to zero, so the whole expression is zero.

8. Show that if p and q are polynomials of degree exactly 2 over F17 then there exist integers x and
y such that p(x) ≡ q(y) (mod 17).

Solution: A polynomial of degree exactly 2 cannot take any value more than twice: Assume for
contradiction that p is a degree polynomial and p(x) takes the value c at three different inputs x.
Then p(x)− c is a degree two polynomial with three zeros, a contradiction.

By the pigeonhole principle, it follows that every polynomial of degree exactly two must take at
least nine distinct values in F17. Now assume for contradiction that all values that p and q take
are distinct. Then p and q take at least 18 distinct values altogether, which is impossible.


