
ENGG 2440A: Discrete Mathematics for Engineers Lecture 10
The Chinese University of Hong Kong, Fall 2017 20 and 22 November 2017

1 The division rule

In how many ways can we place two identical rooks on an 8 by 8 chessboard so that they occupy
different rows and different columns?

Let’s first count the number of configurations for two different rooks. Each configuration can then
be represented by a sequence (r1r, r1c, r2r, r2c) indicating the row and column of the first and
second rook, respectively. By the generalized product rule, the set of configurations Cdifferent has
size

|Cdifferent| = 8 · 8 · 7 · 7 = (8 · 7)2.

Now let Cidentical be the set of configurations when the two rooks are identical. We won’t count
the number of elements of Cidentical directly but take advantage of what we know already. Each
configuration in Cidentical can be naturally represented by a pair of sequences in Cdifferent. For
example, the configuration in Cidentical in which one rook is at position (1, 1) and the second one is
at (2, 3) is represented by the pair of sequences (1, 1, 2, 3) and (2, 3, 1, 1) in Cdifferent.

Since each element in Cidentical is represented by exactly two elements in Cdifferent, the set Cdifferent

must be exactly twice as large as Cidentical and so the desired number of configurations is

|Cidentical| =
|Cdifferent|

2
=

(8 · 7)2

2
.

Here is a general description of this type of counting argument. A function f : X → Y is k-to-1 if
for every y in Y , the number of x ∈ X such that f(x) = y is exactly k:

|{x ∈ X : f(x) = y}| = k for every y ∈ Y .

If we want to count the size of Y and have a k-to-1 function from X to Y where X is a set whose
size we know, we can conclude that Y has size |X|/k.

Theorem 1 (The division rule). If f : X → Y is k-to-1, then |Y | = |X|/k.

In the example we just did, f : Cdifferent → Cidentical is the function that takes the sequence
(r1r, r1c, r2r, r2c) to the configuration in which one rook is at (r1r, r1c) and the other one is at
position (r2r, r2c). Then f is a 2-to-1 map since each configuration in Cidentical is mapped to by
exactly two sequences in Cdifferent. We can conclude that |Cidentical| = |Cdifferent|/2 = (8 · 7)2/2.

Circular arrangements In how many ways can we seat n people at a round table? Two seating
configurations are the same if one can be obtained from the other by a turn of the table. Such
configurations are called circular arrangements of a set of n elements. For example, if n = 3 and
the set is {A,B,C}, there are two possible circular arrangements:

1 2

A

BC

A

B C

1

2

We can count the number of circular arrangements using the division rule. Let P be the set of all
permutations of n people and C be the set of all circular arrangements of these people. For each
permutation (p1, . . . , pn), let f(p1, . . . , pn) be the circular arrangement obtained by seating person
p1 at the head of the table, p2 next to p1 clockwise, p3 next to p2 clockwise, and so on.

For example, when n = 3 and the three people are A(lice), B(ob) and C(harlie), then

f maps permutations (A,B,C), (B,C,A), (C,A,B) to circular arrangement 1

and permutations (A,C,B), (C,B,A), (B,A,C) to circular arrangement 2

and we see that f is 3-to-1: The 3! = 6 permutations account for exactly 6/3 = 2 circular arrange-
ments.

For general n, f is n-to-1: The circular arrangement consisting of p1, p2, p3, up to pn in clockwise
direction is mapped to by the n permutations

(p1, p2, p3, . . . , pn), (p2, p3, . . . , pn, p1), . . . , (pn, p1, . . . , pn−2, pn−1).

Since there are |P | = n! permutations of n people and f : P → C is n-to-1, by the division rule we
conclude that there are |C| = n!/n = (n− 1)! circular arrangements of n people.

2 Subsets with a fixed number of elements

In the last lecture we showed that a set of size n has exactly 2n subsets. How many of those subsets
are of size exactly k?

For example, a set of size 3 has 3 subsets of size 2. If the set is {1, 2, 3} those subsets are

{1, 2}, {1, 3}, and {2, 3}.

A set of size 5 has 10 subsets of size 3. If the set is {1, 2, 3, 4, 5} those subsets are

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, and {3, 4, 5}.

Counting such sets “by hand” may not be very reliable. We can do it systematically using rules
from class.

To do this, let X be the set of length k sequences of distinct numbers in the set {1, . . . , n}. For
example, when n = 3 and k = 2, X is the set

X = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

Each size 2 subset of {1, 2, 3} is represented twice by a sequence in X.

For general n and k, we can count the number of sequences in X using the generalized product
rule: There are n choices for the first entry, n−1 choices for the second entry (for each first entry),
n − 2 choices for the third entry, and so on, until we reach the k-th entry and we are left with
n− k + 1 choices for it. By the generalized product rule,

|X| = n · (n− 1) · · · (n− k + 1).

Now let Y be the number of k-element subsets of the set {1, . . . , n} and f : X → Y be the function
that maps each k element sequence to the subset consisting of its entries:

f((a1, . . . , ak)) = {a1, . . . , ak}.

3

The function f is k!-to-1: Each subset is mapped to by the k! permutations of its entries.

By the division rule, we conclude that the size of Y — that is, the number of k-element subsets of
{1, . . . , n} — is

|Y | = |X|
k!

=
n · (n− 1) · · · (n− k + 1)

k!
. (1)

This is an important enough number that there is special notation for it: It is written as
(
n
k

)
(read

“n choose k”). If we multiply both the numerator and denominator of (1) by (n − k)! we get the
nice formula (

n

k

)
=

n!

k!(n− k)!
.

We just proved that

Theorem 2. The number of k element subsets of an n element set is
(
n
k

)
.

In the last lecture we gave a bijective function f from the set {0, 1}n of bit sequences of length n
to the set of all subsets of {1, . . . , n}. The function maps a bit sequence to the set of positions that
contain a one in the sequence:

f((b1, . . . , bn)) = {i : bi = 1}.

The size of the set f((b1, . . . , bn)) equals the number of one entries in the bit sequence:

|f((b1, . . . , bn))| = number of i such that bi equals one.

Therefore the map f is a bijective function from (the set of) bit sequences of length n with exactly
k ones to (the set of) subsets of {1, . . . , n} of size k. So these two sets have the same size.

Corollary 3. The number of n bit sequences with exactly k ones is
(
n
k

)
.

Stars and bars In how many ways can you distribute k identical balls into n different bins so
that there is at most one ball in every bin (assuming n ≥ k)? We can represent each configuration
by an n-bit sequence, where a one in position i indicates that the i-th bin is occupied by a ball.
If there are exactly k balls then the number of possible sequences, and therefore the number of
possible balls-into-bins configurations, is

(
n
k

)
.

Now suppose that there is no restriction on the number of balls that can go into a bin. In how
many ways can k identical balls be distributed into n different bins?

This looks like a difficult counting question. Here is a helpful trick. Each balls-into-bins configura-
tion can be represented by an arrangement of stars and bars on a line, where consecutive blocks of
stars separated by bars represent the states of the bins. For example, the arrangement

? | ? ? | | ? ? ? | ?

represents five bins containing 1, 2, 0, 3, and 1 balls, respectively. In general, the stars before the
first bar represent the balls in the first bin, the stars between the first and second bar represent the
balls in the second bin, and so on, and the stars after the last bar represent the balls in the last
bin.

In this representation, a configuration of k balls and n bins is uniquely identified with a sequence
of k stars and n− 1 bars. So the number of possible configurations equals the number of sequences
of k stars and n− 1 bars. These are sequences of length n+ k− 1 containing exactly k stars, so by
Corollary 3 the number is

(
n+k−1

k

)
.

4

How about the number of configurations of k balls and n bins in which every bin contains at least
one ball? Each such configuration can again be viewed as an arrangement of stars and bars, but
now there must be at least one star before and after every bar. For example, if there are seven
balls, the possible positions of the bars are

? | ? | ? | ? | ? | ? | ?

namely, each of the k bars must fall into a gap between two stars. Since there are k−1 possible gaps,
each one of which can be occupied by one of n−1 bars, there are now

(
k−1
n−1

)
possible configurations.

3 Poker hands

Five card poker is good setting in which we can practice our counting skills. In case you have never
been to a casino, a card deck consists of 52 cards; each card has one of the 13 face values 2 3 4
5 6 7 8 9 J Q K A and one of the four suits ♠,♥,♦,♣. In five card poker, you are dealt a hand
consisting of five different cards, for example

8♠ 9♦ 2♦ A♥ 2♠

and you win a prize if your hand is of a special type. We’ll apply counting rules to figure out the
probability of various types of hands, assuming all five card hands are equally likely.

We will think of the card deck as a set of 52 cards and the hand as a 5-element subset of it, so
the number of possible hands is

(
52
5

)
= 2, 598, 960. This is a large number, so counting hands “by

hand” is impractical and we need to resort to the rules we learned.

Four-of-a-kind A hand is a four-of-a-kind if it contains four cards with the same value, for
example:

{K♠,K♥,K♦,K♣, 3♠}
How many four-of-a-kind hands are there? We can specify a four-of-a-kind sequence completely
and uniquely by giving the face value of the four-of-a-kind, the face value of the fifth card, and the
suit of the fifth card. There are 13 choices for the face value of the four-of-a-kind. Each of them
leaves out 12 choices for the face value of the fifth card and 4 choices for its suit. By the generalized
product rule, the number of four-of-a-kind hands is

13 · 12 · 4 = 624.

Assuming all five card hands are equally likely, the probability of a four-of-a-kind hand is

number of four-of-a-kind hands

number of possible hands
=

13 · 12 · 4(
52
5

) =
624

2, 598, 960
≈ 0.00024.

Flush A hand is a flush if all five cards are of the same suit,1 for example

{Q♣, 10♣, 6♣, 3♣, 2♣}

We can specify a flush uniquely by describing the suit of all the cards in it and their face values.
The suit can be chosen in 4 ways and the five face values can be chosen in

(
13
5

)
ways. By the product

rule, the number of flushes is
(

13
5

)
·4 = 5, 148. Assuming all hands are equally likely, the probability

of a flush is 5, 148/2, 598, 960 ≈ 0.00198. A flush is quite a bit more likely than a four-of-a-kind.

1In poker there is also a “royal flush” and a “straight flush” that are sometimes counted separately. We will
include those into our count of flushes.

5

Full house A hand is a full house if it consists of three cards with one face value and two cards
with another face value, for example

{J♠, J♥, J♣, 6♥, 6♦}.

We can specify each full house completely and uniquely by giving the face value of the cards in the
triple, the suits of the cards in the triple, the face value of the cards in the pair, and the suits of
the cards in the pair. There are 13 choices for the face value of the triple,

(
4
3

)
choices for the suits

in the triple (three suits out of a set of four), 12 remaining choices for the face value of the pair,
and

(
4
2

)
choices for the suits of the cards in the pair. By the generalized product rule, the number

of full house hands is

13 ·
(

4

3

)
· 12 ·

(
4

2

)
= 13 · 4 · 12 · 6 = 3, 744.

Assuming all five card hands are equally likely, the probability of a full house is 3, 144/2, 598, 960 ≈
0.00121.

Two pairs A hand is a two-pairs if it has two cards of one face value, two cards of another face
value, and a fifth card of yet another face value, for example

{K♠,K♥, 10♠, 10♦, 3♠}.

Let us try to count the number of two-pairs hands: There are 13 choices for the face value of the
cards in the first pair and

(
4
2

)
choices for their suits; once these have been chosen, there are 12

choices for the face value of the cards in the second pair and
(

4
2

)
choices for their suits. This leaves

out 11 choices for the face value of the last card and 4 choices for its suit, giving a total of

13 ·
(

4

2

)
· 12 ·

(
4

2

)
· 11 · 4 = 247, 104.

This number is not an accurate count of the number of two-pairs. Our reasoning does not account
for every two-pair hand uniquely! For example, the above hand is counted twice: Once, we count
the pair {K♠,K♥} as a first pair and the pair {10♠, 10♦} as a second pair and the other time we
count the two pairs in the opposite order.

Fortunately, our count of 247,104 is not useless. What this number counts is the number of ordered
two-pairs, namely sequences consisting of a first pair of cards with the same face value, a second
such pair of cards with another face value, and a fifth card with a third face value. There is a
2-to-1 map from the set of ordered two-pairs to the set of two-pairs: The map represents each
two-pair by its two orderings. By the division rule, the number of two pairs is half the number of
ordered two-pairs, namely 247, 104/2 = 123, 552. Assuming equally likely hands, the probability of
a two-pair is 123, 552/2, 598, 960 ≈ 0.04754.

We’ll count a couple more types of hands that may be of no particular use in poker but are good
for counting practice.

All four suits How many hands are there in which each one of the four suits is represented, for
example {2♠, 3♥, 3♦, A♠, 6♣} but not {7♠, 6♣, Q♦, 10♠, 6♣} (♥ is not represented).

We can describe each such hand by specifying a sequence consisting of the face values of four cards in
four different suits (say in the order ♠,♥,♦,♣), plus a face value and a suit for the additional card.
For example, the tuple (10, A, 3, J, 5♦) would represent the hand H = {10♠, A♥, 3♦, J♣, 5♦}.
There are 13 choices for each of the first four face values; once these are fixed, there are 12 choices

6

for the face value of the last card and 4 for its suit, so the number of desired sequences is 134 ·12 ·4.
The function that maps a sequence to the corresponding hand is 2-to-1: the last card in the sequence
can be swapped with the one of the same suit among the first four. For example, the sequence
(10, A, 5, J, 3♦) also represents the hand H. By the division rule, the number of hands in which all
four suits are represented is 132 · 12 · 4/2 = 685, 464.

At least one ace Sometimes the size of the set can be figured out more easily by looking at
its complement. How many hands are there that have at least one ace? Let A be the set of such
hands. The complement of A is the set A of hands that do not contain an ace. The sets A and A
partition all hands, so by the sum rule,

|A|+ |A| =
(

52

5

)
.

How many hands are there that do not contain an ace? Each such hand is a 5-element subset of
the 48-element set obtained by taking out the four aces from the pack of cards and so |A| =

(
48
5

)
.

Therefore

|A| =
(

52

5

)
−
(

48

5

)
= 2, 598, 960− 1, 712, 304 = 886, 656.

One good way to check your answer is to try and solve the same problem in a different way. To do
this, I wrote a computer program that counts the number of hands of a given kind by going over
all possible five-card hands and counting only those that are of the appropriate kind. The program
is a bit slow as it has to check almost 2.3 million hands each time. However it does eventually
produce answers, and they are the same as the ones we calculated using counting rules.

4 Inclusion-exclusion

The sum rule allows us to calculate the size of a union of sets as a sum of the sizes of the sets,
provided the sets are disjoint. If they are not disjoint, there is a more complicated formula called
the inclusion-exclusion rule.

Say Alice has 61 friends on Facebook, Bob has 39, and Charlie has 57. How many users are friends
with at least one of them? We don’t have enough information to answer this question since some of
their friends could be common friends. So suppose we find out that Alice and Bob have 7 common
friends, Alice and Charlie have 23 common friends, and Bob and Charlie have none. Can we answer
now?

Let A, B and C be the sets of friends of Alice, Bob, and Charlie, respectively. We want to know
the size of the set A ∪B ∪ C.

Let’s start with the size of A∪B. If we add the number of elements in A to the number of elements
in B, we have counted all the elements in A ∪ B, but the elements in the intersection A ∩ B have
been counted twice; if we subtract the size of A ∩B, we get the exact count

|A ∪B| = |A|+ |B| − |A ∩B|. (2)

So there are 61 + 39− 7 = 93 users who are friends with Alice or Bob.

We can now calculate the size of A ∪B ∪ C by applying formula (2) twice:

|A ∪B ∪ C| = |(A ∪B) ∪ C|
= |A ∪B|+ |C| − |(A ∪B) ∩ C|
= |A ∪B|+ |C| − |(A ∩ C) ∪ (B ∩ C)|.

7

To calculate |A ∪B| we apply (2) directly. For the last set,

|(A ∩ C) ∪ (B ∩ C)| = |A ∩ C|+ |B ∩ C| − |(A ∩ C) ∩ (B ∩ C)|
= |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|.

After rearranging terms, we get the inclusion-exclusion formula for three sets:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|. (3)

Plugging in the Facebook numbers, we get that |A∪B∪C| = 61+39+57−7−23−0+ |A∩B∩C|.
The set B ∩C is empty, so A∩B ∩C must also be empty. Adding all the numbers we get that 127
users are friends with at least one of Alice, Bob, and Charlie.

Avoiding patterns How many permutations of the 10 letters {a, b, c, d, e, f, g, h, i, j} are there
that do not contain any of the patterns hi, fad, and jig? For example, the permutations edafjigcb
and jghiebfadc should not be counted because the first one contains jig and the second one contains
both hi and fad.

Let A, B, and C be the sets of permutations that contain a hi, a fig, and a fad, respectively. We
will first calculate the size of A ∪ B ∪ C using the formula (3). How many elements does A have?
This set contains the permutations in which hi must appear in sequence so we can think of these
two letters as a single “symbol” that is permuted with the 8 other letters. This way we can view
A as the set of permutations of the 9-element set {a, b, c, d, e, f, g, hi, j} and |A| = 9!. Similarly we
get |B| = 8! and |C| = 8!.

The set A ∩ B contains those permutations that contain both hi and fad. We can view A ∩ B as
the set of permutations of {b, c, e, g, j, hi, fad}, so |A ∩ B| = 7!. Similarly, |B ∩ C| = 6!. The set
A ∩ C is empty because no permutation contains both hi and jig — the i must appear exactly
once. Plugging into (3) we get

|A ∪B ∪ C| = 9! + 8! + 8!− 7!− 6! = 437, 760.

We want to know how many permutations do not contain a hi, a fad, or a jig. This is the
complement of the set A ∪B ∪ C, so the desired number is

|A ∪B ∪ C| = 10!− |A ∪B ∪ C| = 3, 628, 800− 437, 760 = 3, 191, 040.

The general inclusion-exclusion principle for n sets follows the same pattern as formulas (2) and
(3): To calculate the size of the union, we add the sizes of the individual sets, subtract the sizes of
all pairs, add the sizes of all triples, and so on. The formula is more difficult to parse than the rule.

Theorem 4. (Inclusion-exclusion formula) For any n finite sets A1, . . . , An,

|A1 ∪ · · · ∪An| =
∑

I⊆{1,...,n}

(−1)|I|+1
∣∣∣⋂

i∈I
Ai

∣∣∣.
The summation here ranges over all subsets of the indices {1, . . . , n}. For each such subset, we have
a term in the summation whose absolute value is the size of the intersection of the set with these
indices (this is the set ∩i∈IAi) and whose sign is + if I is of odd size and − if I is of even size (this
is the factor (−1)|I|+1).

8

Derangements Each of n people turns in their hat. In how many ways can the hats be reassigned
so that at least one person gets their own hat?

We represent the people by numbers from 1 to n and the assignment of hats to people by permuta-
tions of these numbers. For example, if n = 4, the permutation (2, 3, 1, 4) represents the assignment
in which 2’s hat is given to 1, 3’s hat is given to 2, 1’s hat is given to 3, and 4 gets their own hat.

Let Ai be the set of assignments in which person i gets their own hat. These are represented by
the permutations that fix i, namely entry i occurs in position i. The set A1 ∪ · · · ∪ An represents
those assignments in which at least one person gets their own hat. We are interested in the size of
this set.

We apply the inclusion-exclusion formula to A1 ∪ · · · ∪An. Let’s figure out the sizes of each set Ai
first. The set A1 consists of those permutations in which a 1 occurs in the first position; the other
n− 1 numbers can occur in arbitrary order in the remaining n− 1 positions, so |A1| = (n− 1)!. By
the same reasoning we can conclude that |Ai| = (n− 1)! for every index i.

Let’s now look at the pairwise |Ai ∩ Aj | and take |A1 ∩ A2| as a representative example. The set
A1 ∩ A2 contains those permutations that have a 1 in position 1 and a 2 in position 2; the other
n− 2 numbers can occur in arbitrary order in the remaining positions, so |A1 ∩A2| = (n− 2)!. By
the same reasoning, |Ai ∩Aj | = (n− 2)! for every distinct pair of indices i, j.

Continuing this line of reasoning, we get that |∩i∈IAi| = (n − 3)! for every set of indices I of size
3, (n− 4)! for every set of indices of size 4, and so on.

We now apply the inclusion-exclusion formula. There are n terms of the type |Ai|, each of which
has value (n − 1)!;

(
n
2

)
terms of the type |Ai ∩ Aj |, each of which has value (n − 2)!; and so on.

Taking care of the changes in sign, we get that

|A1 ∪ · · · ∪An| = n · (n− 1)!−
(
n

2

)
· (n− 2)! +

(
n

3

)
· (n− 3)!− . . . (+ or −)

(
n

n

)
· 0!

= n!− n!

2!
+
n!

3!
− . . . (+ or −) 1

= n! ·
(1

1!
− 1

2!
+

1

3!
− . . . (+ or −)

1

n!

)
.

Using some calculus, it is possible to show that the number in the parenthesis equals 1− 1/e plus
or minus an error term that is at most 1/(n+ 1)!, so

|A1 ∪ · · · ∪An|
n!

= 1− 1

e
+ ε, where |ε| ≤ 1

(n+ 1)!
.

This formula tells us that if all hat reassignments were equally likely, the probability that someone
gets back their own hat is very close to 1− 1/e ≈ 0.63212.

5 Error-correcting codes*

An error-correcting code is a scheme that allows for Alice to communicate with Bob reliably in
an environment where some of the data in transit may be corrupted. Suppose that Alice wants
to send a k-bit message to Bob through an unreliable channel, with any one of the 2k strings in
{0, 1}k being a possible message. Some of the bits that Alice sends over may be corrupted, but we
will assume that they don’t go missing and they always arrive in the correct order. How can Bob
ensure that he receives Alice’s intended message in spite of the corruptions?

9

To answer this question we need a model of how corruptions occur. In many scenarios one models
the corruptions probabilistically; for instance, each bit may be flipped to its opposite value indepen-
dently with some probability. Instead we will consider an adversarial communication channel in
which an imaginary adversary Eve is given a budget e of errors she can introduce. After observing
Alice’s transmission Eve can flip up to e of the transmitted bits. So the string received by Bob
differs from the one sent by Alice in up to e positions that are not known to Bob.

In order to achieve reliable communication, Alice and Bob agree to encode each possible k-bit
message x by a longer n-bit codeword C(x) and transmit this codeword through the channel. The
code C can be viewed as a function from the set of k-bit message strings to the set of n-bit
codewords, that is from the set {0, 1}k to the set {0, 1}n. How should Alice and Bob choose the
function C? To understand this, let’s first think of some bad choices of C. If two distinct codewords
C(x) and C(x′) differ in at most e positions then Eve can always introduce ambiguity: Had Alice
sent the codeword C(x), Eve can always corrupt it into C(x′) and Bob will not know whether the
intended message was x or x′. So to ensure error detection, it is necessary that any two codewords
differ in more than e positions. This is also sufficient: If every pair of codewords differs in more
than e positions then Eve cannot turn the codeword sent by Alice into any other codeword, so Bob
will in principle be able to recover the original message (if his received word is in the image of C)
or be able to tell that a transmission error occurred (if not).

For example, suppose k = 2, n = 3, and C : {0, 1}2 → {0, 1}3 is the following code

C(00) = 000 C(01) = 001 C(10) = 101 C(11) = 110.

Since any two codewords differ in (at least) two coordinates, Bob can detect a single error (that is,
error detection is possible when e = 1). However, although Bob can detect a single error, he cannot
correct it. If he receives, for example, the corrupted word 011 he will know that an error occurred
in transmission, but won’t know if Alice’s intended message was 00 or 01.

How should Alice and Bob choose the code C to enable error correction? Let us again think of
some bad choices of C. If two distinct codewords C(x) and C(x′) differ in at most 2e positions
then Eve can use the following strategy to introduce ambiguity. When Alice sends the codeword
C(x), Eve corrupts half of the positions in which C(x) and C(x′) differ and leaves the other half
uncorrupted. For example, if C(x) = 00101001, C(x′) = 11101100, and e = 2, upon receiving
C(x) Eve can flip the first two bits and hand the corrupted word 11101001 to Bob. From Bob’s
perspective, this corrupted word is consistent with both the messages x and x′, so he won’t know
which one was intended by Alice.

On the other hand, if any pair of codewords C(x) and C(x′) differ in at least 2e + 1 positions
then in principle Bob should be able to correct from up to e errors: Upon receiving the corrupted
word y, the message x is determined by the unique codeword C(x) that differs from y in e or fewer
positions. This can be proved formally by contradiction: If there exist two codewords C(x) and
C(x′), each of which differs from y in e or fewer positions, then C(x) and C(x′) can only differ in
those positions in which C(x) differs from y or C(x′) differs from y, which is at most 2e.

To summarize, a potential code allows for detecting to e errors if every pair of codewords differs in
more than e positions, and for correcting up to e errors if every pair of codewords differs in more
than 2d positions. This motivates the notion of distance.

Definition 5. A code C : {0, 1}k → {0, 1}n has distance more than d if for all x 6= x′, the strings
C(x) and C(x′) differ in more than d positions.

A simple way to achieve arbitrarily large distance is by repetition, e.g.

C(0100) = 00 · · · 0︸ ︷︷ ︸
d+1

11 · · · 1︸ ︷︷ ︸
d+1

00 · · · 0︸ ︷︷ ︸
d+1

00 · · · 0︸ ︷︷ ︸
d+1

.

10

This type of code, called a repetition code, is reliable but not particularly efficient in terms of
the amount of information transmitted: A k-bit message is encoded by a codeword of length
n = (d+ 1)k, so the ratio between the length of the codeword and the length of the message grows
linearly with the distance (i.e. the number of errors). Is it possible to do better?

The Gilbert-Varshamov bound Consider the following greedy strategy for designing the code
C. Choose the first codeword c1 arbitrarily in {0, 1}n. Then choose the second codeword c2

arbitrarily, provided that it differs from c1 in more than d positions. Then choose c3 arbitrarily,
provided that it differs from both c1 and c2 in more than d positions. Keep going while possible.
When you get stuck, take k as large as possible and identify the first 2k codewords c1, c2, . . . , c2k

with C(00 · · · 0), C(00 · · · 1), · · · , C(11 · · · 1) in some arbitrary way.

When does the process we described terminate? For termination to occur after K steps, there can
be no strings left in {0, 1}n that differ from all of c1 up to cK in more than d positions. In other
words, it must be that

S1 ∪ S2 ∪ · · · ∪ SK = {0, 1}n

where Si is the set of strings that differ from ci in at most d positions. A union of sets can never
be larger than the sum of their sizes, so

|S1|+ |S2|+ · · ·+ |SK | ≥ |S1 ∪ S2 ∪ · · · ∪ SK | = |{0, 1}n| = 2n. (4)

The set Si consists of all strings in {0, 1}n that differ from ci in at most d positions. Each such
string y is uniquely specified by the set of positions in which y and ci differ. As this map between
elements of Si and subsets of {1, . . . , n} of size at most d is a bijection, the size of Si equals the
number of subsets of the set {1, . . . , n} of size at most d. Therefore

|Si| =
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
for all i.

Plugging into (4) we obtain that

K ·
((
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

))
≥ 2n.

Since k = blogKc, it follows that

k ≥ n−
⌈
log
((
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

))⌉
. (5)

We just proved that

Theorem 6. For all integers n, k, and d satisfying (5) there exists a code C : {0, 1}k → {0, 1}n of
distance more than d.

To get a better idea of what this means we need to understand the sum of binomial coefficients(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
. When d is larger than n/2, the identity

(
n
d

)
=
(
n
n−d
)

gives that(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
= 1

2

((
n
0

)
+ · · ·+

(
n
d

))
+ 1

2

((
n
n−d
)

+ · · ·+
(
n
n

))
≤ 1

2

((
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

))
= 2n−1

because the expression
(
n
0

)
+
(
n
1

)
+ · · · +

(
n
n

)
counts each subset of {1, . . . , n} exactly once. In

this case, inequality (5) does not tell us anything particularly interesting. Indeed, when d > n/2
more than half of the codeword symbols are corrupted and reliable communication is essentially
impossible.

11

Let us now focus on the setting where d ≤ n/2. We will look at the asymptotic behaviour of (5)
when d = δn for some constant δ between 0 and 1/2 and n is large. The term

(
n
d

)
is the largest one

in the sum
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
so let us try to understand the behaviour of this term first. Using

Stirling’s estimate of the factorial, we can write(
n

δn

)
=

n!

(δn)!((1− δ)n)!

= (1 + o(1)) ·
√

2πn · (n/e)n√
2πδn · (δn/e)δn ·

√
2π(1− δ)n · ((1− δ)n/e)(1−δ)n

= (1 + o(1)) · 1√
2πδ(1− δ)n

· 2(−δ log δ−(1−δ) log(1−δ))n.

The function
H(δ) = −δ log δ − (1− δ) log(1− δ)

for 0 < δ < 1 and H(0) = H(1) = 0 is called the binary entropy function. Here is a plot of it.

δ

H(δ)

0 1/2 1
0

1

Plugging in the estimate for
(
n
δn

)
we obtain the following asymptotic bound for the last term in (5)

(assuming δ is between 0 and 1/2):

log
((
n
0

)
+
(
n
1

)
+ · · ·+

(
n
δn

))
≤ log(δn)

(
n
δn

)
= log

(
(1 + o(1)) ·

√
δn/2π(1− δ) · 2H(δ)n

)
= H(δ)n+O(log n).

In fact, it is possible to eliminate the pesky O(log n) from this expression and obtain a bound that
is valid for all n, not only those that are sufficiently large.

Claim 7. For all d ≤ n/2, (
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
≤ 2H(d/n)·n.

Proof. Since d ≤ n/2, d is at most than n− d and we have the inequality

d∑
k=0

(
n

k

)
≤

d∑
k=0

(
n

k

)(n− d
d

)d−k
=
(n− d

d

)d
·

d∑
k=0

(
n

k

)(d

n− d

)k
.

12

We now use the binomial identity
∑n

k=0

(
n
k

)
xk = (1+x)n with x = d/(n−d) to obtain the inequality

d∑
k=0

(
n

k

)(d

n− d

)k
≤

n∑
k=0

(
n

k

)(d

n− d

)k
=
(

1 +
d

n− d

)n
=
(n

n− d

)n
.

Putting the two inequalities together we obtain that for δ = dn,

d∑
k=0

(
n

k

)
≤ nn

dd(n− d)n−d
=

1

δδn · (1− δ)(1−δ)n = 2H(δ)·n.

Theorem 6 and Claim 7 give the following corollary.

Corollary 8. If d ≤ n/2 and k ≥ b(1−H(d/n)) · nc then there exists a code C : {0, 1}k → {0, 1}n
of distance more than d.

For instance, if we allow the codeword to be three times as long as the message, that is n = 3k then
Corollary 8 says that there exists a code of distance d ≈ 0.174n (as H(0.174) ≈ 2/3). In contrast,
the repetition code with these parameters has distance only 3.

References

This lecture is based on Chapter 15 of the text Mathematics for Computer Science by E. Lehman,
T. Leighton, and A. Meyer. Section 5 is based on these lecture notes of Venkatesan Guruswami.

http://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes2.pdf

	The division rule
	Subsets with a fixed number of elements
	Poker hands
	Inclusion-exclusion
	Error-correcting codes*

