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In the game Let’s Make a Deal, you are given a choice between three doors A, B, and C. One of
the doors hides a prize. Behind the other two are goats. You pick a door, say door A. The host
opens another door, say door C, to reveal a goat. You are then given a choice: You can stay with
door A or switch to door B. Should you stay or should you switch?

Since you found out that door C hides a goat, there are two possibilities: Either the prize is behind
door A and the goat is behind door B, or vice versa. So it shouldn’t matter what you decide; you
have a 50-50 chance at getting the prize.

Is this reasoning correct?

1 Probability models

Probability is the branch of mathematics that is concerned with these sorts of questions. In order
to apply it, we need to come up with a model that precisely describes the situation at hand. A
(finite) probability model consists of the following three elements:

• A sample space, which specifies the set of all possible outcomes of an experiment;

• Sets of outcomes of interest, called events;

• An assignment of probabilities to the different outcomes.

The sample space In Let’s Make a Deal, the outcome is specified by all the choices that were
made before you get to decide whether to stay to switch. These include (1) The door x concealing
the prize; (2) The door y you initially choose; and (3) The door z that the host opens to reveal a
goat. So the outcomes can be described by triples of the form (x, y, z), where x, y, and z refer to
one of the three doors.

For example, (B,A,C) describes the outcome in which the prize is behind door B, you initially
choose door A, then the host reveals door C. In this particular case, switching (to door B) would
win you the prize, while staying with door A would reveal another goat.

In our model of Let’s Make a Deal, not all possible triples of As, Bs, and Cs are valid outcomes.
For example, (A,B,B) is not valid because the host is not supposed to open the door that you
picked; the introductory paragraph says that the host opens another door. We will also assume
that outcomes like (A,B,A) are not valid; the host doesn’t want to give away the prize for free!
Ruling out such devious plays, we can model the sample space of Let’s Make a Deal as follows:

The sample space consists of those outcomes (x, y, z) in which x can be any door, y can
be any door, and z can be any door different from x and y.

In general, the sample space of a probabilistic experiment can be very large, but in this example it
is small enough that we can list them all:

S = {(A,A,B), (A,A,C), (A,B,C), (A,C,B), (B,A,C), (B,B,A),

(B,B,C), (B,C,A), (C,A,B), (C,B,A), (C,C,A), (C,C,B)}.
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In this example it is useful to represent the sample space by a tree diagram in which the vertices
represent the possible states at different stages of the experiment, and the edges represent the
choices available at a given stage:
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Events An event is a subset of the sample space. Events are usually described by a predicate
that the outcomes must satisfy. For example, the event “the prize is behind door A” (i.e., “x = A”)
consists of the outcomes

{(A,A,B), (A,A,C), (A,B,C), (A,C,B)},

while the event “the host opened door C” (i.e., z = C) is

{(A,A,C), (A,B,C), (B,A,C), (B,B,C)}.

We are interested in the event E described by the predicate “contestant wins by switching”. This
consists of those outcomes (x, y, z) for which the door different from both y and z contains the
prize, namely the outcomes for which x, y, and z are all different:

E = {(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}. (1)

Since the sample space contains 12 outcomes and the contestant wins by switching in 6 of those
12, it may be tempting to conclude that if the player decides to switch, the probability that they
win is 50%. This is incorrect because not all outcomes are equally likely. To explain why we need
to talk about probabilities.

Probabilities In order to complete our model, we need to assign a probability to each possible
outcome. The probabilities are non-negative numbers that add up to one. There are many possible
ways of doing so. Which is the correct one?
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Assigning probabilities to outcomes in a reasonable manner can be tricky. It is usually a good idea
to break up the experiment into simple “components” and reason about them separately. In the
case of Let’s Make a Deal, let’s try to reason separately about what happens in the different stages
of the game.

In the very beginning, the game host has to choose the door x that hides the prize. What are
the probabilities that we should assign to the different doors? In the absence of any additional
information, it seems reasonable to assume that all three doors are equally likely to hide the prize,
namely that the choices x = A, x = B, and x = C all have probability 1/3.

Now that the prize has been safely hidden behind door x, the contestant is about to choose door y.
How should we assign probabilities to the different choices? Again, it seems reasonable to assume
(in the absence of additional information, once x is fixed, the choices y = A, y = B, and y = C all
have probability 1/3.

Finally the host has to choose which door z to open. Looking at the tree diagram, you notice that
for certain settings of x and y, once these have been fixed the choice of z is forced. For example,
if x = A and y = B, the host has no choice but to reveal z = C, so this choice must be made with
probability one. In other settings, for example when x = y = B, the host has two possible choices
for z. In such cases, it is reasonable to assume that these are made with equal probabilities, namely
the choices z = A and z = C each occur with probability 1/2.

We can summarize our probability model by the following rule:

At any node in the tree diagram, all outgoing edges are taken with equal probability.

This rule allows us to calculate the probability of all outcomes: For example, to reach the outcome
(B,B,A), there are 3 choices for x, 3 choices for y (given that x = B) and 2 choices for z (given
that x = B and y = B), so the outcome (B,B,A) has probability 1

3 ·
1
3 ·

1
2 = 1

18 . On the other
hand, the outcome (B,C,A) has probability 1

3 ·
1
3 · 1 = 1

9 . Thus not all outcomes are equally likely!
In fact,

Outcome (x, y, z) has probability

{
1
18 , if x = y,
1
9 , if x 6= y.

The probability of an event is the sum of the probabilities of all the outcomes in it. The probability
that the contestant wins after switching is therefore the sum of the probabilities of the six outcomes
in (1). Since each of them has probability 1

9 , we obtain that

Pr[E] = 6 · 1

9
=

2

3

so switching doubles your chances of winning the prize over staying!

Here is a more conceptual explanation as to why switching pays off in Let’s Make a Deal. If the
contestant happens to initially pick the door that hides the prize (i.e., x = y), then switching never
wins. However, if he picks either one of the other two doors (i.e., x 6= y), then switching always
wins. In other words, the contestant wins by switching if and only if doors x and y are different,
which happens with probability 2/3.

This example illustrates a general template for reasoning about probabilities in experiments with
finitely many outcomes. First, identify and describe mathematically the sample space, which
comprises all possible outcomes. Second, identify one or more events that you are interested in.
Third, assign probabilities to each possible outcome. Be careful; different outcomes might have
different probabilities! Finally, calculate the probability of the event(s) of interest by adding up
the probabilities of the constituent outcomes.
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2 Balls and bins

You toss five balls into three bins at random. What is the probability that none of the bins are
empty?

The first task is to describe the sample space. There are several possible ways to specify the
outcomes mathematically:

Option A: as an arrangement of five stars and two bars like in Lecture 10; for example, ? ? | ? ? ? |
would describe 2 balls in the first bin, 3 in the second bin, and zero in the third bin.

Option B: as a sequence (x, y, z) of three numbers that add to five, specifying the occupancies of
the three bins; the above configuration would be described by the sequence (2, 3, 0).

Option C: as a sequence of 1s, 2s, and 3s of length 5 describing the bin that the first, second, and
so on balls land in; for example (2, 3, 1, 1, 2) would describe the outcome in which the first
ball lands in bin 2, the second ball lands in bin 3, and so on.

Which of these is the correct description? All three can describe the outcome of the experiment
unambigously, but one is better than the other two for working out probabilities. This will become
apparent shortly.

Next, we need to specify the event of interest, namely the set E of outcomes in which none of the
bins are empty. Under option A, E is the set of star-bar sequences in which there is at least one
star to the left and to the right of every bar. Under option B, E is the set of triples (x, y, z) in
which all of x, y, and z are nonzero. Under option C, E is the set of sequences in which every
number 1, 2, 3 occurs at least once.

We now come to the assignment of probabilities to outcomes. As there is no precise description of
how the balls are assigned to the bins, we have to use common sense to come up with a probability
model. One reasonable way to visualize the assignment is to imagine that first, a ball is tossed
randomly into one of the three bins and is equally likely to land into each; once this is done, a
second ball is tossed, and this one is also equally likely to land into each bin; and so on until the
fifth ball is tossed. The corresponding tree diagram is a full ternary tree of depth five.

Under these assumptions, it should be evident that option C is the most natural way to represent
outcomes. The probability of outcome (2, 3, 1, 1, 2) is then 1

3 ·
1
3 ·

1
3 ·

1
3 ·

1
3 = 1/35. So is the probability

of outcome (1, 1, 1, 1, 1). In fact, all outcomes have the same probability.

To summarize our discussion so far, our probability model is the following:

Sample space: S = {1, 2, 3}5 (all sequences of 1s, 2s, and 3s of length 5)

Event of interest: E = {x ∈ S : x contains a 1, a 2, and a 3}.

Probabilities: All x ∈ S have the same probability 1/35.

A probability space S in which all outcomes have equal probabilities is said to have equally likely
outcomes. In general, each outcome must then occur with probability 1/|S|. The probability of
any event E is then given by the formula

Pr[E] =
|E|
|S|

assuming equally likely outcomes.

Going back to balls and bins, all that remains is to calculate the size of E, namely to count the
number of sequences that contain a 1, a 2, and a 3. The complement event E can be written as a
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union of three sets N1 ∪ N2 ∪ N3, where Ni is the set of those sequences that do not contain any
instances of symbol i. By the inclusion-exclusion formula,

|E| = |N1|+ |N2|+ |N3| − |N1 ∩N2| − |N1 ∩N3| − |N2 ∩N3|+ |N1 ∩N2 ∩N3|.

By the product rule, |N1| = |N2| = |N3| = 25, |N1 ∩ N2| = |N2 ∩ N3| = |N1 ∩ N3| = 1, and
|N1 ∩N2 ∩N3| = 0, so |E| = 3 · 25 − 3. Therefore,

Pr[E] =
|E|
|S|

=
|S| − |E|
|S|

=
35 − 3 · 25 + 3

35
=

50

81
,

which is about 62%.

The assumption of equally likely outcomes was very handy as it allowed us to convert our probability
question into a counting question. This assumption must always be justified carefully; if used
uncritically it can easily lead to incorrect answers. To illustrate this point, suppose that we use the
option A representation, and we wrongly assume that all outcomes (i.e., all sequences of five stars
and two bars) are equally likely. In this model, the event E has probability

Proption A[E] =
|E|option A

|S|option A
=

(
5−1
3−1

)(
5+3−1

5

) =

(
4
2

)(
7
5

) =
2

7

which is less than 29%.

3 Birthdays

There are about 100 students in class today. What is the probability that some pair of students
have the same birthday?

Here is a plausible probability model for this question. We can think of the 365 days of the year
as bins, the k = 100 students as balls, and the assignment of birthdays to students as a balls-into-
bins experiment. In other words, the sample space is the set S = {1, 2, . . . , 365}k of sequences of
numbers between 1 and 365 of length 100. We assume equally likely outcomes.

Is this a reasonable model? In our modeling we did make some simplifying assumptions about
the world. Our choice of sample space does not take leap years (i.e. February 29 birthdays) into
account. Another assumption we made in our assignment of probabilities is that all days any given
person is equally likely to be born on any day of the year. Certain studies indicate that this is not
true; summer birthdays are in fact more favored. Yet another possible complication is that there
may be relationships between the students that may affect their birthdays. For instance if the class
has twins then the outcome is predetermined.

Despite these possible shortcomings, let us stick with our simple balls-and-bins models for birthdays
and calculate what it predicts. The event Ek of interest consists of those sequences (x1, x2, . . . , xk)
in S in which at least two of the entries are the same, namely there exist indices i 6= j such that
xi = xj . It will be easier to work with the complement Ek: This is the event that all people in
class have distinct birthday, or the above sequence has no repeated entries.

Since all events are equally likely, Pr[Ek] = |Ek|/|S|. The size of S is 365k. The size of Ek can be
calculated by the generalized product rule: There are 365 choices for x1, 364 remaining choices for
x2, and so on. Therefore |Ek| = 365 · 364 · · · (365− k + 1), and

Pr[Ek] =
|Ek|
|S|

=
365 · 364 · · · (365− k + 1)

365k
.
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When there are k = 100 people, the probability that all birthdays are distinct is 3 · 10−7. The
probability of a same birthday is overwhelmingly large!

The following plot shows the probability of all k people having distinct birthdays as k ranges from
1 to 80. The probability drops below half at k = 23. So in a room with 23 people it is already
more likely that two people have the same birthday than not.
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More generally, if there are n bins and k balls, the probability that all balls fall in distinct bins
(under equally likely outcomes) equals

Pr[Ek] =
n · (n− 1) · · · (n− k + 1)

nk
= 1 ·

(
1− 1

n

)
·
(

1− 2

n

)
· · ·
(

1− k − 1

n

)
.

Using the inequality 1− x ≤ e−x, we obtain that

Pr[Ek] ≤ e0 · e−1/n · e−2/n · · · e−(k−1)/n = e(1+2+···+(k−1))/n = e−(k2)/n.

The blue line in the above plot represents this function. For example, when n = 365 and k = 100,

the probability of all birthdays being distinct is at most e−(1002 )/365, which is about 12 · 10−7.

4 Intransitive dice

There are two dice on the table with possibly different face values. Alice chooses a die and Bob
takes the other one. They toss their dice larger value wins. Which die should Alice choose?

To be concrete, suppose these are 3-sided dice with face values X = {2, 6, 7} and Y = {1, 5, 9},
respectively. (If you prefer 6-sided dice just pretend each face value occurs twice.) Alice wants to
choose the die that has the larger probability of winning the game. The experiment here consists
of tossing the two dice, so the sample space is the product set

X × Y = {(2, 1), (2, 5), (2, 9), (6, 1), (6, 5), (6, 9), (7, 1), (7, 5), (7, 9)}.

The event EXY of interest consists of those outcomes in which die X beats die Y, namely

EXY = {(x, y) ∈ X × Y : x > y} = {(2, 1), (6, 1), (6, 5), (7, 1), (7, 5)}.

Given no information to the contrary, we may assume that all outcomes are equally likely and so

Pr[EXY ] =
|EXY |
|X × Y |

=
5

9
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and Alice should choose die X, which gives her a 5/9 chance of winning.

Now Bob brings in a third die with face values Z = {3, 4, 8}. Now Alice can choose any one of the
three die and Bob gets to pick among the remaining two. How does this additional choice affect
Alice’s strategy?

To answer this question let us figure out the winning probabilities for the other pairs of dice. If
Alice were to play die Y against Bob’s die Z, the sample space would be

Y × Z = {(1, 3), (1, 4), (1, 8), (5, 3), (5, 4), (5, 8), (9, 3), (9, 4), (9, 8)}

and, assuming equally likely outcomes, the probability of the event EY Z = {(y, z) ∈ Y ×Z : y > z}
is Pr[EY Z ] = |EY Z |/|Y ×Z|, which is also 5/9. If Alice were to play die Z against Bob’s die X then

Z ×X = {(3, 2), (3, 6), (3, 7), (4, 2), (4, 6), (4, 7), (8, 2), (8, 6), (8, 7)}

and the probability of the event EZX that die Z beats die X is again 5/9.

In conclusion, no matter which die Alice picks, Bob can always beat her with probability 5/9. The
tables have now turned and Bob has the advantage!

5 Axioms of probability

After all these examples we can give a precise mathematical definition of probability. A probability
space consists of a set S called the sample space and a function Pr that assigns a non-negative
number Pr[E] to subsets E of S called events. The function Pr must satisfy the following two
axioms:

Axiom 1 Pr[S] = 1

Axiom 2 If E1, E2, E3, . . . are disjoint, then Pr[E1∪E2∪E3∪. . . ] = Pr[E1]+Pr[E2]+Pr[E3]+· · · .

Axioms 1 and 2 are good enough to specify the probabilities of any event we could conceivably be
interested in. For example, for any event A,

Pr[A] + Pr[A] = Pr[A ∪A] by Axiom 2

= Pr[S]

= 1 by Axiom 1.

Therefore, Pr[A] = 1− Pr[A], or in words the probability of the event not happening is one minus
the probability of it happening.

Similarly, if A ⊆ B, then

Pr[A] = Pr[A ∪ (B −A)]

= Pr[A] + Pr[B −A] by Axiom 2

≥ Pr[A] because Pr[B −A] is non-negative.

In words, larger events are more probable. You can also derive the inclusion-exclusion formula for
probabilities

Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B]
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and its extension to three sets

Pr[A ∪B ∪ C] = Pr[A] + Pr[B] + Pr[C]− Pr[A ∩B]− Pr[A ∩ C]− Pr[B ∩ C] + Pr[A ∩B ∩ C]

and so on. These mirror closely the identities about set size from Lecture 10.

One important difference is that the axioms of probability are meaningful even when the sample
space S is infinite. Infinite sample spaces come up, for instance, in the following type of question.

You toss a fair coin until it comes up heads. What is the probability that the number
of tosses was even?

In principle, the coin tossing could go on for an arbitrarily long time, so the sample space that
describes this experiment is infinite:

S = {H, TH, TTH, TTTH, . . . }.

Since the coin is fair, these outcomes have probabilities 1/2, 1/4, 1/8, 1/16, and so on. An outcome
with n tosses has probability 1/2n. Therefore,

Pr[S] =
1

2
+

1

22
+

1

23
+

1

24
+ · · · = 1

as required by Axiom 1.

The event E of interest consists of those outcomes with an even number of tosses, namely

E = {TH, TTTH, TTTTTH, . . . }.

By Axiom 2,

Pr[E] = Pr[{TH}] + Pr[{TTTH}] + Pr[{TTTTTH}] + · · ·

=
1

22
+

1

24
+

1

26

=
1

4

(
1 +

1

4
+

1

42
+ · · ·

)
=

1

4
· 1

1− 1/4

=
1

3
.
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