1. Let A and B be arbitrary events. Which of the following is true? If you answer yes, prove it using the axioms of probability. If you answer no, provide a counterexample.
(a) $\mathrm{P}(A \mid B)+\mathrm{P}\left(A \mid B^{c}\right)=1$.

Solution: No. If B is the event of a fair coin flipping heads and A is the event of the coin flipping heads or tails then $\mathrm{P}(A \mid B)=1$ and $\mathrm{P}\left(A \mid B^{c}\right)=1$.
(b) $\mathrm{P}(A \cap B \mid A \cup B) \leq \mathrm{P}(A \mid B)$.

Solution: Yes, because $\mathrm{P}(A \cup B) \geq \mathrm{P}(B)$ and so

$$
\mathrm{P}(A \cap B \mid A \cup B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A \cup B)} \leq \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\mathrm{P}(A \mid B)
$$

2. n independent random numbers are sampled uniformly from the interval $[0,1]$.
(a) If $n=10$, what is the probability that exactly 4 of them are greater than 0.7 ?

Solution: Let N be the number of such random numbers greater than 0.7 . Then N is a binomial random variable with $n=10$ samples and success probability $p=3$, so

$$
\mathrm{P}(X=4)=\binom{10}{4} 0.3^{4}(1-0.3)^{10-4} \approx 0.200
$$

(b) If $n=50$, use the Central Limit Theorem to estimate the probability that their sum is between 20 and 25 (inclusive).

Solution: Let X_{i} denote the value of the i-th random number $(i=1, \ldots, n)$. Then X_{1}, \ldots, X_{n} are independent random variables with mean $1 / 2$ and variance $1 / 12$. Let $X=$ $X_{1}+\cdots+X_{n}$. Then $\mathrm{E}[X]=25$ and $\operatorname{Var}[X]=50 / 12$. By the Central Limit Theorem, the CDF of X can be approximated by the CDF of a $\operatorname{Normal}(25, \sqrt{50 / 12})$ random variable \tilde{N}. Normalizing $\tilde{N}=25+N \cdot \sqrt{50 / 12}$,

$$
\begin{aligned}
\mathrm{P}(20 \leq X \leq 25) & \approx \mathrm{P}(20 \leq \tilde{N} \leq 25) \\
& =\mathrm{P}(20 \leq 25+N \cdot \sqrt{50 / 12} \leq 25) \\
& =\mathrm{P}(-5 / \sqrt{50 / 12} \leq N \leq 0) \\
& \approx \mathrm{P}(-2.45 \leq N \leq 0) \\
& =F_{N}(0)-F_{N}(-2.45) \\
& \approx 0.5-0.0071 \\
& \approx 0.4929 .
\end{aligned}
$$

3. Companies A and B produce lightbulbs. Their lifetimes are exponential random variables with mean 2 years for company A and 1 year for company B.
(a) A shop sources $3 / 4$ of its lightbulbs from company A and the remaining $1 / 4$ from company B. If a random lifebulb from the shop survived for 2 years, how likely is it to have been produced by company B?

Solution: Let X be the lifetime of the lightbulb, and A and B be the (complementary) events that the respective company produced it. Then $\mathrm{P}(X \geq t \mid A)=e^{-t / 2}$ and $\mathrm{P}(X \geq t \mid B)=e^{-t}$. By the total probability theorem,

$$
\mathrm{P}(X \geq 2)=\mathrm{P}(X \geq 2 \mid A) \mathrm{P}(A)+\mathrm{P}(X \geq 2 \mid B) \mathrm{P}(B)=e^{-1} \cdot \frac{3}{4}+e^{-2} \cdot \frac{1}{4} \approx 0.310
$$

and by Bayes' rule

$$
\mathrm{P}(B \mid X \geq 2)=\frac{\mathrm{P}(X \geq 2 \mid B) \mathrm{P}(B)}{\mathrm{P}(X \geq 2)}=\frac{e^{-2} \cdot 1 / 4}{e^{-1} \cdot 3 / 4+e^{-2} \cdot 1 / 4} \approx 0.109
$$

(b) What is the probability that a lightbulb produced by company B outlasts one produced by company A? Assume their lifetimes are independent.

Solution: Let X and Y be their respective lifetimes. The PDF of X is $f_{X}(x)=\frac{1}{2} e^{-x / 2}$. By the total probability theorem,

$$
\begin{aligned}
\mathrm{P}(Y>X) & =\int_{0}^{\infty} \mathrm{P}(Y>X \mid X=x) f_{X}(x) d x \\
& =\int_{0}^{\infty} \mathrm{P}(Y>x) f_{X}(x) d x \\
& =\int_{0}^{\infty} e^{-x} \cdot \frac{1}{2} e^{-x / 2} d x \\
& =\frac{1}{3}
\end{aligned}
$$

Alternative solution: If we divide each year into n equal intervals and flip independent coins of probabilities $1 / 2 n$ and $1 / n$ for the failure of each bulb in each interval, then X and Y are the times of the first failure in the limit as n goes to infinity. For a fixed n, let A_{n} be the event that ligthbulb A failed in the interval in which the first lightbulb failure occurred. Then A_{n} has the same probability as the event that the first coin came up heads given that at least one did, namely

$$
\mathrm{P}\left(A_{n}\right)=\frac{1 / 2 n}{1-(1-1 / 2 n)(1-1 / n)}=\frac{1 / 2 n}{1 / 2 n+1 / n-(1 / 2 n)(1 / n)}=\frac{1}{3+1 / n}
$$

As n tends to infinity, $\mathrm{P}\left(A_{n}\right)$ tends to $1 / 3$ so $\mathrm{P}(Y>X)=1 / 3$.
4. Alice takes T hours to travel to Bob's house, where T is a random variable with PDF

$$
f_{T}(t)= \begin{cases}1 / t^{2}, & \text { when } t \geq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the CDF (cumulative distribution function) $F_{T}(t)=\mathrm{P}(T \leq t)$.

Solution: $F_{T}(t)$ is zero when $t<1$. When $t \geq 1$,

$$
F_{T}(t)=\int_{1}^{t} \frac{1}{u^{2}} d u=-\left.\frac{1}{u}\right|_{1} ^{t}=1-\frac{1}{t} .
$$

(b) The distance between Alice's and Bob's house is one mile so that Alice travels at a speed $V=1 / T$ miles per hour. What is Alice's expected speed $\mathrm{E}[V]$?

Solution: The CDF $F_{V}(v)$ of V is zero when $v \leq 0$. If $v>0$,

$$
\mathrm{P}(V \leq v)=\mathrm{P}(1 / T \leq v)=\mathrm{P}(T \geq 1 / v)=1-F_{T}(1 / v)= \begin{cases}v, & \text { if } 0 \leq v \leq 1 \\ 1, & \text { if } v \geq 1\end{cases}
$$

This is the CDF of a $\operatorname{Uniform}(0,1)$ random variable, so $\mathrm{E}[V]=1 / 2$.
5. A group of 10 boys and 10 girls is randomly divided into 5 teams A, B, C, D, E with 4 children per team.
(a) What is the probability that all children in team A are of the same gender?

Solution: By the multiplication rule, this probability is $p=9 / 19 \cdot 8 / 18 \cdot 7 / 17 \approx 0.087$.
(b) Is the probability that all teams are of mixed gender more than 50% or not? Justify your answer.

Solution: It is. Let S be the number of same gender teams. By linearity of expectation, $\mathrm{E}[S]=5 p \approx 0.433$. By Markov's inequality, $\mathrm{P}(S \geq 1) \leq \mathrm{E}[S]$, so the complementary event $S=0$ occurs with probability at least $1-0.433>0.5$.

