## Practice questions

1. There are 5 red balls, 5 blue balls, and 5 green balls in a bin. You draw two balls from a bin. What is the probability that
(a) Ball 2 is red?
(b) Ball 2 is red given that ball 1 is red, if the balls are drawn with replacement?
(c) Ball 2 is red given that ball 1 is red, if the balls are drawn without replacement?
(d) Ball 2 is not blue given that ball 1 is red, if the balls are drawn without replacement?
(e) Ball 2 is red given that ball 1 is not blue, if the balls are drawn without replacement?
2. Roll three 6 -sided dice. Let $E_{12}$ be the event that the first face is the same as the second face. Define $E_{23}$ and $E_{13}$ analogously. Determine which of the following statements are true:
(a) Any two of the three events $E_{12}, E_{23}, E_{13}$ are independent.
(b) $E_{12}, E_{23}$, and $E_{13}$ are independent.
(c) $E_{12}$ and $E_{23}$ are independent conditioned on $E_{13}$.
3. If Alice flips 10 coins and Bob flips 9 coins, what is the probability that Alice gets more heads than Bob? (Hint: Use conditioning. You may want to work out a smaller example first.)
4. Computers $a$ and $b$ are linked through seven cables as in the picture. Each cable fails with probability $10 \%$ independently of the others. Let $C$ be the event "there is a connection between $a$ and $b$ " and $F$ be the event "the middle
 vertical cable fails".
(a) What is the probability of $C$ given $F$ ?
(b) What is the probability of $C$ given $F^{c}$ ?
(c) What is the probability of $C$ ?

## Additional ESTR 2018 questions

5. You have collected the following statistics on the fraction of smokers and drinkers that suffer from medical condition $X$ among 1000 randomly tested individuals:

| smokes | drinks | has $X$ | number of cases |
| :---: | :---: | :---: | :---: |
| yes | yes | yes | 3 |
| yes | yes | no | 27 |
| yes | no | yes | 7 |
| yes | no | no | 63 |
| no | yes | yes | 2 |
| no | yes | no | 68 |
| no | no | yes | 38 |

Does drinking affect condition $X$ ?
6. Can there be four events $E_{1}, E_{2}, E_{3}, E_{4}$ so that every pair $E_{i}, E_{j}$ is independent but every triple $E_{i}, E_{j}, E_{k}$ is not $(i, j, k$ are distinct indices)?
More generally, suppose you are given a set $\mathcal{I}$ consisting of subsets of $\{1, \ldots, n\}$. Under which conditions on $\mathcal{I}$ can there exist a sample space $\Omega$ and events $E_{1}, \ldots, E_{n}$ such that for every set of indices $I$, the events $E_{i}: i \in I$ are independent when $I \in \mathcal{I}$ and not independent otherwise?

