Practice questions

1. A point is chosen uniformly at random inside a circle with radius 1 . Let X be the distance from the point to the centre of the circle. What is the (a) CDF (b) PDF (c) expected value and (d) variance of X ? [Adapted from textbook problem 3.2.7]
2. Bob's arrival time at a meeting with Alice is X hours past noon, where X is a random variable with PDF

$$
f(x)= \begin{cases}c x, & \text { if } 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c.
(b) What is the probability that Bob arrives by 12.30 ?
(c) What is the expected hour of Bob's arrival?
(d) Given that Bob hasn't arrived by 12.30 , what is the probability that he arrives by 12.45 ?
(e) Given that Bob hasn't arrived by 12.30, what is the expected hour of Bob's arrival?
3. Alice arrives at her bus stop at noon. Buses arrive at a rate of 3 per hour in the next hour and 1 per hour after that.
(a) Divide each hour into n equal intervals and let E_{i} be the event "a bus arrives in the i-th interval past noon." What is $\mathrm{P}\left(E_{i}\right)$? (Assume n is sufficiently large so that the probability of two or more buses arriving in interval i is negligible.)
(b) Let I_{n} be the index of the interval in which the first bus arrives. Assuming the events E_{i} are independent, what is the CDF of I_{n} ?
(c) Let T be a random variable whose CDF is $F_{T}(t)=\lim _{n \rightarrow \infty} \mathrm{P}\left(I_{n} / n \leq t\right)$. Calculate the CDF of T. What does T represent?
(d) Calculate the PDF and the expected value of T.
4. To send a message $m \in\{-1,1\}$ to Bob, Alice emits a signal $m x$ of "strength" $x>0$. Owing to noise Bob receives a $\operatorname{Normal}(m x, 1)$ random variable Y and decodes it to the sign of $Y(+1$ if Y is positive, -1 if negative). The cost of operating this scheme is x cents if the decoding is correct and $x+10$ cents if it isn't. How should Alice pick x to minimize the expected cost?

Additional ESTR 2018 questions

5. Let $p(\sigma)$ be the probability of the event " $\lfloor X\rfloor$ is even", where X is a $\operatorname{Normal}(0, \sigma)$ random variable and $\lfloor x\rfloor$ is the largest integer that is no larger than x. What is $p_{\infty}=\lim _{\sigma \rightarrow \infty} p(\sigma)$? Can you plot $p(\sigma)$ in terms of σ ? For which σ does $\left|p(\sigma)-p_{\infty}\right|$ drop and stay below 10^{-4} ? (It is okay to investigate this question empirically.)
6. Suppose a random variable X with PDF f that has the following two properties: (1) $f(x)>0$ for every real number x and (2) $f(x) / f(y) \leq 2$ whenever $|x-y| \leq 1$. What is the smallest possible variance that X can have?
