Practice questions

1. The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}C(x+y+1) y, & \text { if } 0 \leq x \leq 2,0 \leq y \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

Find (a) the value of C and (b) The conditional $\operatorname{PDF} f_{Y \mid X}(y \mid x)$.
2. Alice and Bob agree to meet. Alice's arrival time A is uniform between 12:00 and 12:45 and Bob's arrival time B is uniform between 12:15 and 13:00. Let E be the event "Alice and Bob arrive within 30 minutes of one another".
(a) What is $\mathrm{P}(E)$ assuming A and B are independent?
(b) If you don't know the joint PDF of A and B, how large can $\mathrm{P}(E)$ be?
(c) (Optional) If you don't know the joint PDF of A and B, how small can $\mathrm{P}(E)$ be?
3. Raindrops hit the ground at a rate of 1 per second. An observatory has a raindrop sensing equipment. A signal is received by the computer with a maximum delay of 1 second after sensing a raindrop, with all delays equally likely. Find
(a) The joint PDF of the time T of the first raindrop and the time S of the signal reception.
(b) The marginal PDF of S.
(c) The conditional PDF of T given S.
4. Here is a way to solve Buffon's needle problem without calculus. Recall that an ℓ inch needle is dropped at random onto a lined sheet, where the lines are one inch apart.
(a) Let A be the number of lines that the needle hits. Let B be the number of times that a polygon of perimeter ℓ hits a line. Show that $\mathrm{E}[A]=\mathrm{E}[B]$. (Hint: Use linearity of expectation.)
(b) Assume that $\ell<\pi$. Calculate the expected number of times that a circle of perimeter ℓ hits a line.
(c) Assume that $\ell<1$. Use part (a) and (b) to derive a formula for the probability that the needle hits a line. (Hint: The number of hits is a Bernoulli random variable.)

