Large deviation bounds summary

- 1. Markov's inequality: $P(X \ge a) \le E[X]/a$.
 - Applies to any *non-negative* random variable X, and any a > 0(a > E[X] for a meaningful bound).
 - Requires only knowledge of E[X]
 - Generally useful when E[X] is small and X is "concentrated" around E[X].
- 2. Chebyshev's inequality: $P(|X \mu| \ge t\sigma) \le 1/t^2$, where $\mu = E[X], \sigma = \sqrt{Var[X]}$.
 - Applies to any random variable X (with finite μ, σ), and any t > 0 (t > 1 for a meaningful bound).
 - Requires knowledge of both E[X] and Var[X].
 - Can be used to bound both $P(X \ge a)$ and $P(X \le a)$.
- 3. Central Limit Theorem: If $X = X_1 + \cdots + X_n$ where X_i independent and have same PDF/PMF, then $(X E[X])/\sqrt{\operatorname{Var}[X]} \approx \operatorname{Normal}(0, 1)$.
 - Applies for X being sum of many *independent* random variables.
 - Requires knowledge of $\mu = E[X_i]$ and $\sigma^2 = Var[X_i]$ to obtain $E[X] = n\mu$, $Var[X] = n\sigma^2$.
 - Approximates the CDF of X, but does not provide an error on the quality of the approximation.¹ Using the axioms, we can use it to approximate probabilities of other events like P(150 < |X| < 200).

¹This error will depend on the PDF/PMF of X_i . The Berry-Esseen Theorem is a refinement of the Central Limit Theorem that gives a explicit error bound. Away from the mean, Chernoff bounds give much tighter estimates for many random variables of interest.