Questions

1. A Chicken lays a Poisson (λ) number N of eggs. Each egg independently hatches a chick with probability p. Let X be the number of chicks that hatch. Calculate
(a) the conditional expectation $\mathrm{E}[X \mid N=n]$;
(b) the unconditional expectation $\mathrm{E}[X]$;
(c) the unconditional expectation $\mathrm{E}[N X]$;
(d) the covariance $\operatorname{Cov}[X, N]$.
[Based on Blitzstein-Hwang Exercise 7.48]
2. Six boys and six girls sit randomly at a round table. Let X be the number of boys that sit between two girls.
(a) Let X_{i} be the indicator for the event "boy i sits between two girls." What is $\operatorname{Var}\left[X_{i}\right]$?
(b) What is $\operatorname{Cov}\left[X_{i}, X_{j}\right](i \neq j)$?
(c) What is $\operatorname{Var}[X]$?
3. Two typing monkeys sit at special keyboards. The keyboards have only two keys a and b. Each monkey types in a random 200 letter string, independently of the other one. Let E be the event "There is a pattern of 20 consecutive letters that appears in both strings." Is it true that $\mathrm{P}(E)<5 \%$? Justify your answer.
4. 100 people put their hats in a box and each one pulls a random hat out.
(a) Let G be any 10-person group. What is the probability that everyone in G pulls their own hat?
(b) What is the expected number of 10-person groups in which everyone pulls their own hat?
(c) Show that the probability that 10 or more people pull their own hat is less than 10^{-6}.

Additional ESTR 2018 question

5. In ESTR 2018 Lecture 9 I claimed that $\mathrm{E}\left[X^{4}\right]=3 \sigma^{4}$ for a $\operatorname{Normal}(0, \sigma)$ random variable X. In this exercise you will derive that formula.
(a) Let X be a $\operatorname{Normal}(0,1)$ random variable. Show that $\mathrm{E}\left[e^{t X}\right]=e^{-t^{2} / 2}$ for every real number t.
(b) Calculate $\mathrm{E}\left[X^{4}\right]$ by taking derivatives. (You may assume that the expectation of a derivative is the same as the derivative of an expectation.)
(c) Can you calculate $\mathrm{E}\left[X^{k}\right]$ for all k ?
