1. You choose a 3 -digit number by randomly setting its digits to $1,2,3,4$ or 5 without repetition. What is the probability that your number is greater than 232 ?

Solution: By the equally likely outcomes formula the probability is $|A| / 5 \cdot 4 \cdot 3$ where A is the set of numbers of the given type that are greater than 232 . These comprise all $3 \cdot 4 \cdot 3=36$ choices that start with 3,4 , or 5 , all $2 \cdot 3=6$ choices that start with a 2 followed by a 4 or 5 , and 2 choices that start with 23 followed by a 4 or a 5 . Therefore $|A|=24+6+2=44$ and $\mathrm{P}(A)=44 / 60=11 / 15$.

Alternative solution: Let X, Y, Z be the three digits. The event A of interest is a disjoint union of $X \geq 3,(X=2) \cap(Y \geq 4)$, and $(X=2) \cap(Y=3) \cap(Z \geq 4)$. By the axioms of probability

$$
\begin{aligned}
\mathrm{P}(A) & =\mathrm{P}(X \geq 3)+\mathrm{P}(Y \geq 4 \mid X=2) \mathrm{P}(X=2)+\mathrm{P}(Z \geq 4 \mid X=2, Y=3) \mathrm{P}(Y=3 \mid X=2) \mathrm{P}(X=2) \\
& =\frac{3}{5}+\frac{1}{2} \cdot \frac{1}{5}+\frac{2}{3} \cdot \frac{1}{4} \cdot \frac{1}{5}=\frac{11}{15}
\end{aligned}
$$

2. A river is polluted with probability 40%. Its fish stocks are low with probability 50%. These events are independent. Fishing is forbidden when the river is polluted or fish stocks are low. You see a "fishing is forbidden" sign. What is the probability that the river is polluted?

Solution: Let A and B be the two events. Then

$$
\mathrm{P}(A \mid A \cup B)=\frac{\mathrm{P}(A)}{\mathrm{P}(A \cup B)}=\frac{\mathrm{P}(A)}{1-\mathrm{P}\left(A^{c}\right) \mathrm{P}\left(B^{c}\right)}=\frac{0.4}{1-0.6 \cdot 0.5}=\frac{4}{7} \approx 0.571
$$

3. Alice, Bob, and Charlie each put $\$ 1$ on the table and flip a fair coin. The one whose flip is different from the other two wins and collects the money. If all flips are identical they keep flipping until a winner emerges, putting in an extra $\$ 1$ each time. What is the expected gain of the winner?

Solution: If a winner emerges in round R their gain is $2 R$ dollars. In any given round a winner emerges in six outcomes out of the eight possible. As outcomes are equally likely the probability is $3 / 4$. Therefore R is a Geometric(3/4) random variable. Its expected value is $\mathrm{E}[R]=4 / 3$ and the winner's gain is $\mathrm{E}[2 R]=2 \mathrm{E}[R]=8 / 3$.
4. A cup has 9 balls of which 2 are blue, 3 are red, and 4 are green. Three balls are taken out without replacement. Find the PMF of the number of colors that appear among the balls taken out.

Solution: The number of colors N can be 1,2 , or 3 . The event $N=1$ happens when all three balls are red or green, so $\mathrm{P}(N=1)=\frac{3}{9} \cdot \frac{2}{8} \cdot \frac{1}{7}+\frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7}=5 / 84$. For the event $N=3$, three balls of different colors in some fixed order, e.g. blue then red then green, has probability $2 \cdot 3 \cdot 4 / 9 \cdot 8 \cdot 7=1 / 21$. As all $3!=6$ color orderings are equally likely $\mathrm{P}(N=3)=6 / 21$. Since the probabilities must add up to one $\mathrm{P}(N=2)=1-5 / 84-6 / 21=55 / 84$.

2 5. Six boys and six girls sit at a round table. What is the expected number of boys that sit between two girls?

Solution: The probability that a given boy has a girl to his left is $6 / 11$. Conditioned on this, the probability that he has a girl to his right is $5 / 10=1 / 2$. Therefore the probability that a given boy sits between two girls is $3 / 11$. By linearity of expectation the number of boys that sit between two girls is $6 \cdot 3 / 11=18 / 11 \approx 1.636$.

