Alice, Bob, and Charlie each toss a 6 -sided die. What is the probability that exactly two of their dice values are equal?
Solution: The sample space consists of all $6^{3}=216$ possible triples of values for Alice's, Bob's, and Charlie's dice. The event E of interest consists of those outcomes in which two of them take the same value x but the third one takes a different value y. We calculate the size of E using the product rule: There are 3 choices for the person that tosses the y-valued die, 6 choices for y, and 5 remaining choices for x. Therefore $|E|=3 \cdot 6 \cdot 5$. By the equally likely outcomes formula, $\mathrm{P}(E)=3 \cdot 6 \cdot 5 / 6^{3}=5 / 12 \approx 0.417$.

