An electric plant is connected to a house through three power lines as in the diagram. A typhoon destroys each power line independently with probability 30%. What is the probability that the house loses power?

Solution: Let S_{i} be the event that line i survives the typhoon, and S be the event that the house remains powered. Then $S=\left(S_{1} \cup S_{2}\right) \cap S_{3}$. By independence

$$
\begin{aligned}
\mathrm{P}(S) & =\mathrm{P}\left(S_{1} \cup S_{2}\right) \mathrm{P}\left(S_{3}\right) \\
& =\left(1-\mathrm{P}\left(S_{1}^{c} \cap S_{2}^{c}\right)\right) \mathrm{P}\left(S_{3}\right) \\
& =\left(1-\mathrm{P}\left(S_{1}^{c}\right) \mathrm{P}\left(S_{2}^{c}\right)\right) \mathrm{P}\left(S_{3}\right) \\
& =(1-0.3)^{2} \cdot 0.7 \\
& =0.637 .
\end{aligned}
$$

Therefore the house loses power with probability $\mathrm{P}\left(S^{c}\right)=1-\mathrm{P}(S)=0.363$.

