The PDF of a delivery man's arrival hour past noon is

$$
f(t)= \begin{cases}1 /(t+1)^{2}, & \text { if } t \geq 0 \\ 0, & \text { if } t<0\end{cases}
$$

The delivery man hasn't arrived by 1 pm . What is the probability that he arrives before 2 pm ?
Solution: Let T be the arrival time. The CDF of T is

$$
\mathrm{P}(T \leq x)=\int_{0}^{x} \frac{1}{(t+1)^{2}} d t=\left.\frac{1}{t+1}\right|_{0} ^{x}=1-\frac{1}{x+1}
$$

for $x \geq 0$, so

$$
\mathrm{P}(T<2 \mid T>1)=\frac{\mathrm{P}(1<T<2)}{\mathrm{P}(T>1)}=\frac{\mathrm{P}(T<2)-\mathrm{P}(T \leq 1)}{1-\mathrm{P}(T \leq 1)}=\frac{1 / 2-1 / 3}{1 / 2}=\frac{1}{3}
$$

