1. In how many ways can we roll 4 dice so that
(a) The face values of the dice are all different?

Solution: The first die has 6 possible outcomes. For each of them, there are 5 possibilities for the second die that are different from the first, 4 possibilities for the third die different from the first two, and 3 possibilities for the last die different from the first 3 . The total number of possibilities is therefore $6 \cdot 5 \cdot 4 \cdot 3=360$.
(b) The face values of the dice are increasing (e.g., 2356 but not 3516,1224)?

Solution: We are choosing 4 distinct face values out of the set $\{1,2,3,4,5,6\}$ and then writing them down from smallest to largest. This can be done in $\binom{6}{4}=15$ possible ways.
2. A bin contains 10 black balls and 10 white balls. You draw three balls without replacement. What is the probability that all three are black?

Solution: The sample space Ω consists of all $\binom{20}{10}$ arrangements of the balls. We assume equally likely outcomes. The event A consists of those arrangements in which three black balls appear in the first three positions. As the other 7 black balls can appear anywhere in the other 17 positions, A has size $\binom{17}{7}$. By the equally likely outcomes formula,

$$
\mathrm{P}(A)=\frac{\binom{17}{7}}{\binom{20}{10}}=\frac{10 \cdot 9 \cdot 8}{20 \cdot 19 \cdot 18} \approx 0.1053
$$

3. ENGG 2760A has 100 students this year, including Alice and Bob. The students are randomly divided into three tutorials with 30,35 , and 35 students, respectively.
(a) What is the probability that Alice and Bob are both assigned to the 30 -student tutorial?

Solution: The sample space Ω consists of all possible partitions of the 100 students into three tutorials (subsets) of size 30,35 , and 35 . There are $\binom{100}{30,35,35}$ such partitions. The event A_{1} of interest consists of those partitions in which both Alice and Bob land in the 40 -student tutorial. The size of A_{1} is the number of ways to partition the rest of the students into the remaining tutorial slots, which is $\binom{98}{28,35,35}$. Therefore

$$
\mathrm{P}\left(A_{1}\right)=\frac{\binom{98}{28,35,35}}{\binom{100}{30,35,35}}=\frac{30 \cdot 29}{100 \cdot 99} \approx 0.0879
$$

(b) What is the probability that Alice and Bob are assigned to the same tutorial?

Solution: Now the event A of interest is a union of three disjoint events A_{1}, A_{2}, and A_{3} consisting of those outcomes in which Alice and Bob are assigned together into the first, second, and third tutorial, respectively. By a similar calculation as in part (a), $\left|A_{2}\right|=\left|A_{3}\right|=\binom{98}{30,33,35}$. As $|A|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|$ we get that

$$
\mathrm{P}(A)=\frac{|A|}{|\Omega|}=\frac{\left(\begin{array}{c}
98,35,35
\end{array}\right)+2 \cdot\binom{98}{30,33,35}}{\binom{100}{30,35,35}}=\frac{30 \cdot 29+2 \cdot 35 \cdot 34}{100 \cdot 99} \approx 0.3283
$$

4. A six-sided die is rolled three times. Which is more likely: A sum of 11 or a sum of 12 ? (Textbook problem 1.49)

Solution: Let A and B be the events of a sum of 11 and a sum of 12 , respectively. As the outcomes are equally likely, the probabilities of the two sums are $|A| / 6^{3}$ and $|B| / 6^{3}$ so we need to determine which of the sets A and B is bigger. The set A can be partitioned into A_{1} up to A_{6} depending on the first die roll. Similarly, B can be partitioned into B_{1} up to B_{6}. Now A_{1} has the same size as B_{2} as they both share the same pairs of values for the second and third dice. By the same argument, $\left|A_{2}\right|=\left|B_{3}\right|,\left|A_{3}\right|=\left|B_{4}\right|,\left|A_{4}\right|=\left|B_{5}\right|$, and $\left|A_{5}\right|=\left|B_{6}\right|$. Comparing $|A|$ and $|B|$ therefore amounts to comparing $\left|A_{6}\right|$ and $\left|B_{1}\right|$. For an outcome to be in A_{6} the remaining two rolls must add up to 5 , while for B_{1} they must add up to 11 . Therefore $\left|A_{6}\right|=4$ and $\left|B_{1}\right|=2$, so A is the larger set and a sum of 11 is more likely.

