- 1. In how many ways can we roll 4 dice so that
 - (a) The face values of the dice are all different?

Solution: The first die has 6 possible outcomes. For each of them, there are 5 possibilities for the second die that are different from the first, 4 possibilities for the third die different from the first two, and 3 possibilities for the last die different from the first 3. The total number of possibilities is therefore $6 \cdot 5 \cdot 4 \cdot 3 = 360$.

(b) The face values of the dice are increasing (e.g., 2356 but not 3516, 1224)?

Solution: We are choosing 4 distinct face values out of the set $\{1, 2, 3, 4, 5, 6\}$ and then writing them down from smallest to largest. This can be done in $\binom{6}{4} = 15$ possible ways.

2. A bin contains 10 black balls and 10 white balls. You draw three balls without replacement. What is the probability that all three are black?

Solution: The sample space Ω consists of all $\binom{20}{10}$ arrangements of the balls. We assume equally likely outcomes. The event A consists of those arrangements in which three black balls appear in the first three positions. As the other 7 black balls can appear anywhere in the other 17 positions, A has size $\binom{17}{7}$. By the equally likely outcomes formula,

$$P(A) = \frac{\binom{17}{7}}{\binom{20}{10}} = \frac{10 \cdot 9 \cdot 8}{20 \cdot 19 \cdot 18} \approx 0.1053.$$

- 3. ENGG 2760A has 100 students this year, including Alice and Bob. The students are randomly divided into three tutorials with 30, 35, and 35 students, respectively.
 - (a) What is the probability that Alice and Bob are both assigned to the 30-student tutorial?

Solution: The sample space Ω consists of all possible *partitions* of the 100 students into three tutorials (subsets) of size 30, 35, and 35. There are $\binom{100}{30,35,35}$ such partitions. The event A_1 of interest consists of those partitions in which both Alice and Bob land in the 40-student tutorial. The size of A_1 is the number of ways to partition the rest of the students into the remaining tutorial slots, which is $\binom{98}{28,35,35}$. Therefore

$$P(A_1) = \frac{\binom{98}{28,35,35}}{\binom{100}{30,35,35}} = \frac{30 \cdot 29}{100 \cdot 99} \approx 0.0879.$$

(b) What is the probability that Alice and Bob are assigned to the same tutorial?

Solution: Now the event A of interest is a union of three disjoint events A_1 , A_2 , and A_3 consisting of those outcomes in which Alice and Bob are assigned together into the first, second, and third tutorial, respectively. By a similar calculation as in part (a), $|A_2| = |A_3| = \binom{98}{30,33,35}$. As $|A| = |A_1| + |A_2| + |A_3|$ we get that

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\binom{98}{28,35,35} + 2 \cdot \binom{98}{30,33,35}}{\binom{100}{30,35,35}} = \frac{30 \cdot 29 + 2 \cdot 35 \cdot 34}{100 \cdot 99} \approx 0.3283.$$

4. A six-sided die is rolled three times. Which is more likely: A sum of 11 or a sum of 12? (*Textbook problem 1.49*)

Solution: Let A and B be the events of a sum of 11 and a sum of 12, respectively. As the outcomes are equally likely, the probabilities of the two sums are $|A|/6^3$ and $|B|/6^3$ so we need to determine which of the sets A and B is bigger. The set A can be partitioned into A_1 up to A_6 depending on the first die roll. Similarly, B can be partitioned into B_1 up to B_6 . Now A_1 has the same size as B_2 as they both share the same pairs of values for the second and third dice. By the same argument, $|A_2| = |B_3|$, $|A_3| = |B_4|$, $|A_4| = |B_5|$, and $|A_5| = |B_6|$. Comparing |A| and |B| therefore amounts to comparing $|A_6|$ and $|B_1|$. For an outcome to be in A_6 the remaining two rolls must add up to 5, while for B_1 they must add up to 11. Therefore $|A_6| = 4$ and $|B_1| = 2$, so A is the larger set and a sum of 11 is more likely.