1. There are 5 red balls, 4 blue balls, and 3 green balls in a bin. You draw two balls from a bin. What is the probability that
(a) Ball 2 is red?
(b) Ball 2 is red given that ball 1 is red, if the balls are drawn with replacement?
(c) Ball 2 is red given that ball 1 is red, if the balls are drawn without replacement?
(d) Ball 2 is not blue given that ball 1 is red, if the balls are drawn without replacement?
(e) Ball 2 is red given that ball 1 is not blue, if the balls are drawn without replacement?

Solution: Let $R_{1}$ be the event "ball 1 is red" and $B_{1}, G_{1}, R_{2}$ be defined similarly,
(a) $\mathrm{P}\left(R_{2}\right)=5 /(5+4+3)=5 / 12$ as the outcomes are equally likely.
(b) $\mathrm{P}\left(R_{2} \mid R_{1}\right)=\mathrm{P}\left(R_{2}\right)=5 / 12$. Owing to the replacement the color of the first ball does not affect the color of the second ball.
(c) $\mathrm{P}\left(R_{2} \mid R_{1}\right)=4 / 11$ because after the first ball is drawn there are 4 red balls to choose out of 11 .
(d) $\mathrm{P}\left(B_{2}^{c} \mid R_{1}\right)=7 / 11$ because after the first ball is drawn there are 7 non-blue balls to choose out of 11.
(e) The conditioned sample space given $B_{1}^{c}$ is partitioned by the events $R_{1}$ and $G_{1}$. By the total probability theorem,

$$
\mathrm{P}\left(R_{2} \mid B_{1}^{c}\right)=\mathrm{P}\left(R_{2} \mid R_{1}\right) \mathrm{P}\left(R_{1} \mid B_{1}^{c}\right)+\mathrm{P}\left(R_{2} \mid G_{1}\right) \mathrm{P}\left(G_{1} \mid B_{1}^{c}\right)=\frac{4}{11} \cdot \frac{5}{8}+\frac{5}{11} \cdot \frac{3}{8}=\frac{35}{88}
$$

2. Alice, Bob, and Charlie are equally likely to have been born on any three days of the year. Let $E_{A B}$ be the event that Alice and Bob were born on the same day. Define $E_{B C}$ and $E_{C A}$ analogously. Which of the following statements is true:
(a) Any two of the three events $E_{A B}, E_{B C}, E_{C A}$ are independent.
(b) $E_{A B}, E_{B C}$, and $E_{C A}$ are independent.
(c) $E_{A B} \cup E_{B C}$ and $E_{C A}$ are independent.

Solution: Our sample space will consist of all triples of possible birthdays $(a, b, c)$ where $a$, $b$, and $c$ are numbers between 1 and 365 (we exclude February 29 to keep things simple). We assume equally likely outcomes, so all triples occur with probability $365^{-3}$.
(a) True. The intersection of any two events is the event that all three were born on the same day. There are 365 such outcomes, each occurring with probability $365^{-3}$, so

$$
P\left(E_{A B} \cap E_{B C}\right)=P\left(E_{A B} \cap E_{C A}\right)=P\left(E_{B C} \cap E_{C A}\right)=365^{-2}
$$

On the other hand, probability that any two of them were born on the same day is

$$
P\left(E_{A B}\right)=P\left(E_{B C}\right)=P\left(E_{C A}\right)=365 \cdot \frac{1}{365^{2}}=365^{-1}
$$

Since $P\left(E_{A B} \cap E_{B C}\right)=365^{-2}=P\left(E_{A B}\right) \cdot P\left(E_{B C}\right)$, the two events $E_{A B}$ and $E_{B C}$ are independent, and similarly for the other two pairs.
(b) False. $E_{A B} \cap E_{B C} \cap E_{C A}$ is also the event that all three were born on the same day, so $\mathrm{P}\left(E_{A B} \cap E_{B C} \cap E_{C A}\right)=365^{-2}$. On the other hand $P\left(E_{A B}\right) \cdot P\left(E_{B C}\right) \cdot P\left(E_{C A}\right)=365^{-3}$ so the three events are not independent.
(c) False. The event $\left(E_{A B} \cup E_{B C}\right) \cap E_{A C}$ happens exactly when all of Alice, Bob, and Charlie have the same birthday, so $\left.\mathrm{P}\left(E_{A B} \cup E_{B C}\right) \cap E_{A C}\right)=365^{-2}$. Using the union rule,

$$
\mathrm{P}\left(E_{A B} \cup E_{B C}\right)=\mathrm{P}\left(E_{A B}\right)+\mathrm{P}\left(E_{B C}\right)-\mathrm{P}\left(E_{A B} \cap E_{B C}\right)=2 \cdot 365^{-1}-365^{-2}
$$

As $\left(2 \cdot 365^{-1}-365^{-2}\right) \cdot 365^{-1} \neq 365^{-2}$ the events are not independent.
3. Cup 1 contains 3 blue balls and 2 red balls. Cup 2 contains 2 blue balls and 8 red balls. I choose a random cup and draw a ball from it.
(a) What is the probability that it is blue?
(b) The ball is blue. What is the probability that it came from cup 1?
(c) I draw another ball from the same cup without replacement. What is the probability that it is also blue?

Solution: Let $C_{i}$ be the event "cup $i$ was chosen", $B_{1}$ be the event "the first ball is blue", and $B_{2}$ be the event "the second ball is blue".
(a) By the total probability theorem:

$$
\mathrm{P}\left(B_{1}\right)=\mathrm{P}\left(B_{1} \mid C_{1}\right) \cdot \mathrm{P}\left(C_{1}\right)+\mathrm{P}\left(B_{1} \mid C_{2}\right) \cdot \mathrm{P}\left(C_{2}\right)=\frac{3}{5} \cdot \frac{1}{2}+\frac{2}{10} \cdot \frac{1}{2}=\frac{2}{5} .
$$

(b) By Bayes' rule

$$
\mathrm{P}\left(C_{1} \mid B_{1}\right)=\frac{\mathrm{P}\left(B_{1} \mid C_{1}\right) \cdot \mathrm{P}\left(C_{1}\right)}{\mathrm{P}\left(B_{1}\right)}=\frac{3 / 10}{2 / 5}=\frac{3}{4}
$$

(c) By the complement rule, $\mathrm{P}\left(C_{2} \mid B_{1}\right)=1-\mathrm{P}\left(C_{1} \mid B_{1}\right)=1 / 4$. We use the total probability theorem again, now conditioned on $B_{1}$ :

$$
\mathrm{P}\left(B_{2} \mid B_{1}\right)=\mathrm{P}\left(B_{2} \mid C_{1} \cap B_{1}\right) \cdot \mathrm{P}\left(C_{1} \mid B_{1}\right)+\mathrm{P}\left(B_{2} \mid C_{2} \cap B_{1}\right) \cdot P\left(C_{2} \mid B_{1}\right)=\frac{2}{4} \cdot \frac{3}{4}+\frac{1}{9} \cdot \frac{1}{4}=\frac{29}{72} .
$$

4. Computers $a$ and $b$ are linked through seven cables as in the picture. Each cable fails with probability $10 \%$ independently of the others. Let $C$ be the event "there is a connection between $a$ and $b$ " and $F$ be the event "the middle
 vertical cable fails".
(a) What is the probability of $C$ given $F$ ?

Solution: Let $T$ and $B$ be the events that $a$ connects to $b$ via the top and bottom paths respectively. Conditioned on $F$, events $T$ and $B$ are independent so

$$
\mathrm{P}(C \mid F)=\mathrm{P}(T \cup B \mid F)=1-\mathrm{P}\left(T^{c} \cap B^{c} \mid F\right)=1-\mathrm{P}\left(T^{c} \mid F\right) \mathrm{P}\left(B^{c} \mid F\right) .
$$

Both $T$ and $B$ are independent of $F$, so by the algebra of independent events, $\mathrm{P}\left(T^{c} \mid F\right)=$ $\mathrm{P}\left(T^{c}\right)$ and $\mathrm{P}\left(B^{c} \mid F\right)=\mathrm{P}\left(B^{c}\right)$ and we get that

$$
\mathrm{P}(C \mid F)=1-\mathrm{P}\left(T^{c}\right) \mathrm{P}\left(B^{c}\right)=1-\left(1-0.9^{3}\right)^{2} .
$$

(b) What is the probability of $C$ given $F^{c}$ ?

Solution: Let $c$ be the top middle node. Conditioned on $F^{c}$, we can contract the top and bottom single nodes and picture the network like this:


Let $L$ and $R$ be the events "there is a connection from $a$ to $c$ " and "there is a connection from $c$ to $b$ ", respectively. They are independent so

$$
\mathrm{P}\left(C \mid F^{c}\right)=P\left(L \cap R \mid F^{c}\right)=P\left(L \mid F^{c}\right) P\left(R \mid F^{c}\right)=\left(1-P\left(L^{c} \mid F^{c}\right)\right)\left(1-P\left(R^{c} \mid F^{c}\right)\right) .
$$

The complement of $L$ (given $F^{c}$ ) happens when both of the connections from $a$ to $c$ fail. Since they are independent,

$$
\mathrm{P}\left(L^{c} \mid F^{c}\right)=0.1 \cdot\left(1-0.9^{2}\right) .
$$

By symmetry, $\mathrm{P}\left(R^{c} \mid F^{c}\right)=0.1 \cdot\left(1-0.9^{2}\right)$, and so

$$
\mathrm{P}\left(C \mid F^{c}\right)=\left(1-0.1 \cdot\left(1-0.9^{2}\right)\right)^{2} .
$$

(c) What is the probability of $C$ ?

Solution: By the total probability theorem,

$$
P(E)=0.1 \cdot\left(1-\left(1-0.9^{3}\right)^{2}\right)+0.9 \cdot\left(1-0.1 \times\left(1-0.9^{2}\right)\right)^{2} \approx 0.959 .
$$

