- 1. Cup 1 has 3 blue balls and 1 red ball. Cup 2 has 1 blue ball and 3 red balls. You choose a cup at random and draw three balls from it without replacement. Let C_i and B_j be the events "you chose cup i" and "the j-th ball is blue", respectively. Is it true that:
 - (a) B_1 and B_2 are independent given C_1 .
 - (b) B_1 and B_2 are independent.
 - (c) B_2 and B_3 are independent given B_1 .

Solution:

- (a) **False.** We expect the color of the first ball to affect the color of the second ball, namely $P(B_2|C_1) \neq P(B_2|B_1 \cap C_1)$. By symmetry $P(B_2|C_1) = P(B_1|C_1) = 3/4$. However $P(B_2|B_1 \cap C_1) = 2/3$ as there will be 2 blue balls and 1 red ball left after a blue ball is taken out.
- (b) **True.** By the total probability theorem

$$P(B_1) = P(B_1 \mid C_1)P(C_1) + P(B_1 \mid C_2)P(C_2) = \frac{3}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{2}$$

By symmetry, $P(B_2)$ is also 1/2. As C_2 doesn't have enough blue balls, $B_1 \cap B_2 = B_1 \cap B_2 \cap C_1$ and by the multiplication rule

$$P(B_1 \cap B_2) = P(B_1 \cap B_2 \mid C_1) P(C_1) = P(B_2 \mid B_1 \cap C_1) P(B_1 \mid C_1) P(C_1) = \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{4}$$

so $P(B_1 \cap B_2) = P(B_1) \cdot P(B_2)$.

(c) **True.** By part (b) (and symmetry of the blue balls) $P(B_3|B_1) = P(B_3) = 1/2$. On the other hand, $B_1 \cap B_2$ means C_1 must hold so

$$P(B_3|B_1 \cap B_2) = P(B_3|B_1 \cap B_2 \cap C_1) = \frac{1}{2}$$

because after drawing two blue balls out of cup one there is an even chance that the third ball is also blue.

Alternative solution: The events B_1, B_2, B_3 are independent. From part (b) we know that any pair of them is independent. As for all three, $P(B_1 \cap B_2 \cap B_3) = P(B_1 \cap B_2 \cap B_3 | C_1) P(C_1) = 1/4 \cdot 1/2 = 1/8$ which is the same as $P(B_1) P(B_2) P(B_3)$. Therefore $P(B_2 \cap B_3 | B_1) = P(B_2 \cap B_3) = P(B_2) P(B_3) = P(B_2 | B_1) P(B_3 | B_1)$.

- 2. Suppose the number of school bus arriving at the Sir Run Run Shaw Hall in any time interval is a Poisson random variable, with a rate of 1 bus in 5 minutes.
 - (a) What is the probability that no bus arrives in the next 30 minutes?

Solution: The rate of bus arrivals is 6 in 30 minutes, so the number of buses that arrive in a 30-minute interval is a Poisson(6) random variable X. We are interested in the probability of the event X = 0, which equals $e^{-6} \approx 0.0024$.

(b) What is the probability that at least 5 buses arrive in the next 10 minutes?

Solution: The rate of arrivals is 2 in 10 minutes, so we want to know what is the probability that a Poisson(2) random variable Y takes value 5 or more. So we need to calculate

$$P(Y \ge 5) = P(Y = 6) + P(Y = 7) + \cdots$$

which is an infinite sum. By the axioms of probability, we can instead calculate

$$\begin{split} \mathbf{P}(Y \ge 5) &= 1 - \mathbf{P}(Y < 5) \\ &= 1 - \mathbf{P}(Y = 0) - \mathbf{P}(Y = 1) - \mathbf{P}(Y = 2) - \mathbf{P}(Y = 3) - \mathbf{P}(Y = 4) \\ &= 1 - \frac{e^{-2} \cdot 2^0}{0!} - \frac{e^{-2} \cdot 2^1}{1!} - \frac{e^{-2} \cdot 2^2}{2!} - \frac{e^{-2} \cdot 2^3}{3!} - \frac{e^{-2} \cdot 2^4}{4!}, \\ &= 1 - 7e^{-2} \end{split}$$

which is about 0.0527.

(c) Let M be the minute in which the first bus arrives. For example if the first bus arrives in 4 min 23 sec then M = 5. What kind of random variable is M? What is P(M = 6)?

Solution: Let E_t be the event "at least one bus arrives in the *t*-th minute". Then E_1, E_2, E_3, \ldots are independent. The number of buses that arrive in a given minute is a Poisson(1/5) random variable, so $P(E_i) = 1 - P(E_i^c) = 1 - e^{-1/5} \approx 0.181$. Then M is the first minute when E_M happens so it is a Geometric $(1 - e^{-1/5})$ random variable. Therefore

$$P(M = 6) = (e^{-1/5})^5 (1 - e^{-1/5}) = 1/e - 1/e^{5/6} \approx 0.067.$$

- 3. You attend a wedding with 500 guests.
 - (a) Let X be the number of other guests that share your birthday. What kind of random variable is X?
 - (b) What is the probability that X = 1?
 - (c) Now model the number of other guests that share your birthday as a Poisson(λ) random variable N. What is the rate λ ? How do P(X = 1) and P(N = 1) compare?

Solution:

- (a) We can model the number of guests having your birthday as a Binomial(n = 499, p = 1/365) random variable X.
- (b) The probability that X = 1 is $\binom{499}{1} \cdot p \cdot (1-p)^{499-1} \approx 0.3487$.
- (c) We can model this process as a Poisson(λ) random variable N with $\lambda = np = 499/365$. Then the probability of N = 1 is $\lambda \cdot e^{-\lambda} \approx 0.3484$, which is slightly smaller than the probability of X = 1.
- 4. Calculate the PMFs of the following random variables:
 - (a) The first time X at which both the patterns TH and HT have appeared in a sequence of fair coin flips. For example, X = 6 for the sequence HHTTTH.

Solution: The events X = 1 and X = 2 never occur. For $x \ge 3$, the event X = x occurs when either there is a head at time x, and the first x - 1 flips consist of some heads followed by some tails with at least one of each kind, or vice versa. As there are x - 2 possible positions in which the first flip can occur, there are x - 2 possible outcomes of each kind. As each outcome has probability 2^{-x} , $P(X = x) = 2(x - 2)/2^x$ for $x \ge 3$.

(b) The first time Y at which all three face values have appeared in a sequence of rolls of a fair 3-sided die. For example, Y = 6 for the sequence 232231.

Solution: The events Y = 1 and Y = 2 never happen. For $y \ge 3$, let R_y be the value of the y-th roll. Conditioned on $R_y = 1$, the event Y = y happens when the first y - 1 rolls are all 2s or 3s with at least one of each type. Let A be the event "the first y - 1 rolls are all 2s or 3s" and B be the event "the first y rolls are all of the same type". Then $P(A) = (2/3)^{y-1}$ by independence of the rolls and $P(B) = 2/3^{y-1}$ as there are only two outcomes in B. By the axioms of probability,

$$P(Y = y | R_y = 1) = P(A \cap B^c) = P(A) - P(A \cap B) = (2/3)^{y-1} - 2/3^{y-1}.$$

As Y = y and $R_y = 1$ are independent events, $P(Y = y) = (2/3)^{y-1} - 2/3^{y-1}$ for $y \ge 3$.