1. Cup 1 has 3 blue balls and 1 red ball. Cup 2 has 1 blue ball and 3 red balls. You choose a cup at random and draw three balls from it without replacement. Let C_{i} and B_{j} be the events "you chose cup i " and "the j-th ball is blue", respectively. Is it true that:
(a) B_{1} and B_{2} are independent given C_{1}.
(b) B_{1} and B_{2} are independent.
(c) B_{2} and B_{3} are independent given B_{1}.

Solution:

(a) False. We expect the color of the first ball to affect the color of the second ball, namely $\mathrm{P}\left(B_{2} \mid C_{1}\right) \neq \mathrm{P}\left(B_{2} \mid B_{1} \cap C_{1}\right)$. By symmetry $\mathrm{P}\left(B_{2} \mid C_{1}\right)=\mathrm{P}\left(B_{1} \mid C_{1}\right)=3 / 4$. However $\mathrm{P}\left(B_{2} \mid B_{1} \cap C_{1}\right)=2 / 3$ as there will be 2 blue balls and 1 red ball left after a blue ball is taken out.
(b) True. By the total probability theorem

$$
\mathrm{P}\left(B_{1}\right)=\mathrm{P}\left(B_{1} \mid C_{1}\right) P\left(C_{1}\right)+P\left(B_{1} \mid C_{2}\right) P\left(C_{2}\right)=\frac{3}{4} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{2}
$$

By symmetry, $\mathrm{P}\left(B_{2}\right)$ is also $1 / 2$. As C_{2} doesn't have enough blue balls, $B_{1} \cap B_{2}=$ $B_{1} \cap B_{2} \cap C_{1}$ and by the multiplication rule

$$
\mathrm{P}\left(B_{1} \cap B_{2}\right)=\mathrm{P}\left(B_{1} \cap B_{2} \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)=\mathrm{P}\left(B_{2} \mid B_{1} \cap C_{1}\right) \mathrm{P}\left(B_{1} \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)=\frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2}=\frac{1}{4}
$$

so $\mathrm{P}\left(B_{1} \cap B_{2}\right)=\mathrm{P}\left(B_{1}\right) \cdot \mathrm{P}\left(B_{2}\right)$.
(c) True. By part (b) (and symmetry of the blue balls) $\mathrm{P}\left(B_{3} \mid B_{1}\right)=\mathrm{P}\left(B_{3}\right)=1 / 2$. On the other hand, $B_{1} \cap B_{2}$ means C_{1} must hold so

$$
\mathrm{P}\left(B_{3} \mid B_{1} \cap B_{2}\right)=\mathrm{P}\left(B_{3} \mid B_{1} \cap B_{2} \cap C_{1}\right)=\frac{1}{2}
$$

because after drawing two blue balls out of cup one there is an even chance that the third ball is also blue.
Alternative solution: The events B_{1}, B_{2}, B_{3} are independent. From part (b) we know that any pair of them is independent. As for all three, $\mathrm{P}\left(B_{1} \cap B_{2} \cap B_{3}\right)=\mathrm{P}\left(B_{1} \cap B_{2} \cap\right.$ $\left.B_{3} \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)=1 / 4 \cdot 1 / 2=1 / 8$ which is the same as $\mathrm{P}\left(B_{1}\right) \mathrm{P}\left(B_{2}\right) \mathrm{P}\left(B_{3}\right)$. Therefore $\mathrm{P}\left(B_{2} \cap B_{3} \mid B_{1}\right)=\mathrm{P}\left(B_{2} \cap B_{3}\right)=\mathrm{P}\left(B_{2}\right) \mathrm{P}\left(B_{3}\right)=\mathrm{P}\left(B_{2} \mid B_{1}\right) \mathrm{P}\left(B_{3} \mid B_{1}\right)$.
2. Suppose the number of school bus arriving at the Sir Run Run Shaw Hall in any time interval is a Poisson random variable, with a rate of 1 bus in 5 minutes.
(a) What is the probability that no bus arrives in the next 30 minutes?

Solution: The rate of bus arrivals is 6 in 30 minutes, so the number of buses that arrive in a 30 -minute interval is a Poisson(6) random variable X. We are interested in the probability of the event $X=0$, which equals $e^{-6} \approx 0.0024$.
(b) What is the probability that at least 5 buses arrive in the next 10 minutes?

Solution: The rate of arrivals is 2 in 10 minutes, so we want to know what is the probability that a Poisson(2) random variable Y takes value 5 or more. So we need to calculate

$$
\mathrm{P}(Y \geq 5)=\mathrm{P}(Y=6)+\mathrm{P}(Y=7)+\cdots,
$$

which is an infinite sum. By the axioms of probability, we can instead calculate

$$
\begin{aligned}
\mathrm{P}(Y \geq 5) & =1-\mathrm{P}(Y<5) \\
& =1-\mathrm{P}(Y=0)-\mathrm{P}(Y=1)-\mathrm{P}(Y=2)-\mathrm{P}(Y=3)-\mathrm{P}(Y=4) \\
& =1-\frac{e^{-2} \cdot 2^{0}}{0!}-\frac{e^{-2} \cdot 2^{1}}{1!}-\frac{e^{-2} \cdot 2^{2}}{2!}-\frac{e^{-2} \cdot 2^{3}}{3!}-\frac{e^{-2} \cdot 2^{4}}{4!}, \\
& =1-7 e^{-2}
\end{aligned}
$$

which is about 0.0527 .
(c) Let M be the minute in which the first bus arrives. For example if the first bus arrives in 4 min 23 sec then $M=5$. What kind of random variable is M ? What is $\mathrm{P}(M=6)$?

Solution: Let E_{t} be the event "at least one bus arrives in the t-th minute". Then $E_{1}, E_{2}, E_{3}, \ldots$ are independent. The number of buses that arrive in a given minute is a Poisson $(1 / 5)$ random variable, so $\mathrm{P}\left(E_{i}\right)=1-\mathrm{P}\left(E_{i}^{c}\right)=1-e^{-1 / 5} \approx 0.181$. Then M is the first minute when E_{M} happens so it is a $\operatorname{Geometric}\left(1-e^{-1 / 5}\right)$ random variable. Therefore

$$
\mathrm{P}(M=6)=\left(e^{-1 / 5}\right)^{5}\left(1-e^{-1 / 5}\right)=1 / e-1 / e^{5 / 6} \approx 0.067 .
$$

3. You attend a wedding with 500 guests.
(a) Let X be the number of other guests that share your birthday. What kind of random variable is X ?
(b) What is the probability that $X=1$?
(c) Now model the number of other guests that share your birthday as a Poisson (λ) random variable N. What is the rate λ ? How do $\mathrm{P}(X=1)$ and $\mathrm{P}(N=1)$ compare?

Solution:

(a) We can model the number of guests having your birthday as a $\operatorname{Binomial}(n=499, p=$ $1 / 365$) random variable X.
(b) The probability that $X=1$ is $\binom{499}{1} \cdot p \cdot(1-p)^{499-1} \approx 0.3487$.
(c) We can model this process as a Poisson (λ) random variable N with $\lambda=n p=499 / 365$. Then the probability of $N=1$ is $\lambda \cdot e^{-\lambda} \approx 0.3484$, which is slightly smaller than the probability of $X=1$.
4. Calculate the PMFs of the following random variables:
(a) The first time X at which both the patterns TH and HT have appeared in a sequence of fair coin flips. For example, $X=6$ for the sequence ннтtTH.

Solution: The events $X=1$ and $X=2$ never occur. For $x \geq 3$, the event $X=x$ occurs when either there is a head at time x, and the first $x-1$ flips consist of some heads followed by some tails with at least one of each kind, or vice versa. As there are $x-2$ possible positions in which the first flip can occur, there are $x-2$ possible outcomes of each kind. As each outcome has probability $2^{-x}, \mathrm{P}(X=x)=2(x-2) / 2^{x}$ for $x \geq 3$.
(b) The first time Y at which all three face values have appeared in a sequence of rolls of a fair 3 -sided die. For example, $Y=6$ for the sequence 232231.

Solution: The events $Y=1$ and $Y=2$ never happen. For $y \geq 3$, let R_{y} be the value of the y-th roll. Conditioned on $R_{y}=1$, the event $Y=y$ happens when the first $y-1$ rolls are all 2 s or 3 s with at least one of each type. Let A be the event "the first $y-1$ rolls are all 2 s or 3 s " and B be the event "the first y rolls are all of the same type". Then $\mathrm{P}(A)=(2 / 3)^{y-1}$ by independence of the rolls and $\mathrm{P}(B)=2 / 3^{y-1}$ as there are only two outcomes in B. By the axioms of probability,

$$
\mathrm{P}\left(Y=y \mid R_{y}=1\right)=\mathrm{P}\left(A \cap B^{c}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B)=(2 / 3)^{y-1}-2 / 3^{y-1} .
$$

As $Y=y$ and $R_{y}=1$ are independent events, $\mathrm{P}(Y=y)=(2 / 3)^{y-1}-2 / 3^{y-1}$ for $y \geq 3$.

