1. N is a Geometric (P) random variable. The success probability P itself is a Uniform random variable independent of N. You observe that $N=2$. What is the PDF of P given this event? (Optional) In general what is the PDF of P given N ?

Solution: By Bayes' rule, conditional PDF of P given $N=2$ is

$$
f_{P \mid N}(x \mid 2)=\frac{\mathrm{P}(N=2 \mid P=p) \cdot f_{P}(p)}{\mathrm{P}(N=2)}=\frac{p(1-p) \cdot 1}{\mathrm{P}(N=2)}
$$

We calculate $\mathrm{P}(N=2)$ using the total probability theorem: The denominator of the equation is an integral of the numerator from 0 to 1 ,

$$
\mathrm{P}(N=2)=\int_{0}^{1} \mathrm{P}(N=2 \mid P=p) f_{P}(p) d p=\int_{0}^{1}(1-p) p d x=\frac{1}{6}
$$

Hence,

$$
f_{P \mid N}(p \mid 2)=6(1-p) p
$$

By the same reasoning, in general

$$
\begin{aligned}
f_{P \mid N}(p \mid n) & =\frac{\mathrm{P}(N=n \mid P=p) f_{P}(p)}{P(N=n)} \\
& =\frac{(1-p)^{n-1} p}{\int_{0}^{1}(1-p)^{n-1} p d p} \\
& =\frac{(1-p)^{n-1} p}{1 / n(n+1)} \\
& =n(n+1)(1-p)^{n-1} p .
\end{aligned}
$$

2. Let X be an Exponential (λ) random variable. Find the PDF of the random variables (a) $Y=X^{2}$ and (b) $Z=e^{-\lambda X}$.

Solution:

(a) For $y \geq 0$, the CDF of Y is $F_{Y}(y)=\mathrm{P}\left(X^{2} \leq y\right)=\mathrm{P}(X \leq \sqrt{y})=1-e^{-\lambda \sqrt{y}}$. The PDF is the derivative of the CDF which is

$$
f_{Y}(y)= \begin{cases}\frac{\lambda}{2 \sqrt{y}} e^{-\lambda \sqrt{y}} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Since X only takes nonnegative values, Z will take values between 0 and 1 . For $0<z \leq 1$, the CDF of Z is

$$
F_{Z}(z)=\mathrm{P}\left(e^{-\lambda X} \leq z\right)=\mathrm{P}\left(X \geq-\frac{\log z}{\lambda}\right)=e^{-\lambda(-\log z / \lambda)}=z
$$

Its derivative is

$$
f_{Z}(z)= \begin{cases}1 & \text { if } 0<z \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

In words, Z is a $\operatorname{Uniform}(0,1)$ random variable.
3. Raindrops hit your head at a rate of 1 per second. What is the PDF of the time at which the second raindrop hits you? How about the third one? (Hint: convolution)

Solution: The time before the second raindrop is $Y=X_{1}+X_{2}$, where X_{1} and X_{2} are independent Exponential(1) random variables. We calculate the PDF of Y using the convolution formula:

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(y-x_{1}\right) d x_{1}=\int_{0}^{y} e^{-x_{1}} e^{-y+x_{1}} d x_{1}=y e^{-y}
$$

The third raindrop hits at time $Z=Y+X_{3}$, where X_{3} is another independent Exponential(1) random variable. By the convolution formula again,

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{Y}(y) f_{X_{3}}(z-y) d y=\int_{0}^{z} y e^{-y} e^{-z+y} d y=\frac{z^{2}}{2} e^{-z}
$$

4. The body temperatures of a healthy person and an infected person are $\operatorname{Normal}\left(36.8,0.5^{2}\right)$ and $\operatorname{Normal}\left(37.8,1.0^{2}\right)$ random variables, respectively. About 1% of the population is infected.
(a) What is the conditional probability that I am infected given that my temperature is t ?
(b) For which values of t am I more likely to be infected than not?

Solution:

(a) Let A be the event that I am infected, and T be my body temperature. By the total probability theorem,

$$
f_{T}(t)=\mathrm{P}(A) f_{T \mid A}(x)+\mathrm{P}\left(A^{c}\right) f_{T \mid A^{c}}(t)
$$

where $T \mid A$ is a $\operatorname{Normal}\left(37.8,1.0^{2}\right)$ random variable and $T \mid A^{c}$ is a $\operatorname{Normal}\left(36.8,0.5^{2}\right)$ random variable. The (unconditional) PDF of X is

$$
f_{T}(t)=\frac{0.01}{\sqrt{2 \pi}} e^{-\frac{(t-37.8)^{2}}{2}}+\frac{0.99}{\sqrt{2 \pi}(0.5)} e^{-\frac{(t-36.8)^{2}}{2(0.5)^{2}}}=\frac{0.01}{\sqrt{2 \pi}} e^{-(t-37.8)^{2} / 2}+\frac{1.98}{\sqrt{2 \pi}} e^{-2(t-36.8)^{2}}
$$

By Bayes' rule, the conditional probability of A given T is

$$
P(A \mid T=t)=\frac{P(A) f_{T \mid A}(t)}{f_{T}(t)}=\frac{0.01 e^{-(t-37.8)^{2} / 2}}{0.01 e^{-(t-37.8)^{2} / 2}+1.98 e^{-2(t-36.8)^{2}}}
$$

(b) I am more likely to be infected than not when $\mathrm{P}(A)>\mathrm{P}\left(A^{c}\right)$, namely when

$$
0.01 e^{-(t-37.8)^{2} / 2}>1.98 e^{-2(t-36.8)^{2}}
$$

Taking logarithms of both sides this is equivalent to a quadratic inequality in t. Solving this inequality, we obtain that $\mathrm{P}(A)>\mathrm{P}\left(A^{c}\right)$ holds when $t<t_{-}$or $t>t_{+}$, where $t_{-} \approx 34.4742$ and $t_{+} \approx 38.4591$.

