Practice questions

1. The PDF of a random variable is either $f_{0}(x)=1 / 2\left(H_{0}\right)$ or $f_{1}(x)=1 /\left(\pi \cdot \sqrt{1-x^{2}}\right)\left(H_{1}\right)$, where $-1<x<1$.
(a) For a given threshold $t>0$, describe the set of values x for which $f_{1}(x) / f_{0}(x) \geq t$.
(b) Use part (a) and the Neyman-Pearson lemma to design a test (for a single sample) with false positive probability $1 / 4$.
(c) What is the false negative probability of your test?
2. You are given ten samples of a $\operatorname{Uniform}(0, \theta)$ random variable. You want to test whether $\theta \geq 1\left(H_{0}\right)$ or $0 \leq \theta<1\left(H_{1}\right)$. Consider the test that accepts if all ten samples have value less than $3 / 4$.
(a) What is the largest possible false positive probability of this test?
(b) Calculate the power function of this test, i.e., the probability that the test accepts for a given $\theta \in H_{1}$.
[Adapted from DS textbook problem 9.1.2]
3. The reported daily traffic of an amusement park is 11,000 people. Your alternative hypothesis is that it should be at least 12,000 people.
(a) Your observation in one day is a $\operatorname{Normal}(\mu, 500)$ random variable where μ is the true daily traffic. You observed 11,800 people in a particular day. What is the p-value for your hypothesis?
(b) How many (independent) days of observation do you need to test your hypothesis with a 10% false positive and a 10% false negative probability?
4. You suspect that when humans type long "random" strings (sequences of 0s and 1 s) they tend to avoid long consecutive blocks with the same value. To test your hypothesis you design the following experiment: Ask each of 100 subjects to write a random 10-bit string. Then count the number X of answers in which all four middle bits are identical (0000 or 1111).
(a) If the answers were truly random, what kind of random variable would X be?
(b) State the null hypothesis (based on part (a)) and your alternative hypothesis.
(c) Design a test for your hypothesis with a 10% false positive error.
