Each question is worth 10 points. Explain your answers clearly.

1. You are given one sample X that is either $\operatorname{Uniform}(-1,1)$ if $\Theta=0$ or $\operatorname{Uniform}(0,4)$ if $\Theta=1$. Your prior on Θ is equally likely $(\mathrm{P}(\Theta=0)=\mathrm{P}(\Theta=1)=1 / 2)$.
(a) What is the MAP estimator for Θ from X ?
(b) What is the error probability of the MAP estimator in part (a)?
2. A fair n-sided die with equally likely face values $1,2, \ldots, n$ is tossed twice.
(a) What is the maximum likelihood estimator \hat{N} for n given two samples X_{1}, X_{2} ?
(b) Let X_{3} be the next sample. What is the probability that the next sample X_{3} takes one of the values $1,2, \ldots, \hat{N}$ in the limit as n tends to infinity?
3. A random variable has PMF $f(-1)=f(1)=\theta, f(0)=1-2 \theta$, where θ is unknown $\left(0 \leq \theta \leq \frac{1}{2}\right)$.
(a) What is the actual standard deviation σ of the random variable?
(b) What is the PMF of the adjusted sample standard deviation S^{2} for two samples?

Each question is worth 10 points. Explain your answers clearly.

1. X is a $\operatorname{Normal}(0, \Theta)$ random variable, where the prior PMF of the parameter Θ is $P(\Theta=1 / 2)=$ $1 / 2, \mathrm{P}(\Theta=1)=1 / 2$. You observe the following three independent samples of $X: 1.0,1.0,-1.0$.
(a) What is the posterior PMF of Θ ?
(b) What is the MAP estimate of Θ ?
2. The true fraction of employees in some company that support longer lunch breaks is 80%. Ten employees are polled about their support for longer lunch breaks (randomly with repetition). Find the probability that at least 70% of the polled employees support longer lunch breaks
(a) by direct calculation (you may use an online calculator if you provide a reference),
(b) using an approximation by a normal random variable.
3. A random variable X is $\operatorname{Normal}(1,1)$ with probability p and $\operatorname{Normal}(-1,1)$ with probability $1-p$, where the parameter p is unknown.
(a) What is the maximum likelihood estimator of p from a single sample X ?
(b) Is the estimator in part (a) unbiased? Justify your answer.

Each question is worth 10 points. Explain your answers clearly.

1. You are trying to estimate the fraction V of vegetarians in Hong Kong using Bayesian statistics. Your prior is that V is a Uniform $(0,1 / 2)$ random variable.
(a) You poll a random person and they are not a vegetarian. What is the posterior PDF of V ?
(b) What is the expected posterior probability that the next polled person will be a vegetarian?
2. A food company produced 1000 boxes of biscuits, 500 of which contain 4 biscuits, 250 contain 3 biscuits and 250 contain one biscuit. You sample two boxes (with repetition) and record the sample mean \bar{X} of the number of biscuits.
(a) What is the PMF of \bar{X} ?
(b) What is the probability that the sample mean equals the actual mean?
3. An archer hits the bull's eye with probability $\frac{1}{3} \theta$, the rest of the target with probability $\frac{2}{3} \theta$, and misses the target with probability $1-\theta$, where $\theta \in[0,1]$ is a parameter that models the archer's skill.

(a) The archer hits the bull's eye twice and misses the board once. What is the maximum likelihood estimate of their skill θ (assuming their shots are independent)?
(b) Describe an unbiased estimator (3 points) of minimum variance (+2 points) for the player's skill θ from a single attempt. (Hint: The estimator assigns a "score" to each outcome.)
