Alice is about to toss one of two 3 -sided dice. The first die is fair with face values $1,2,3$. The second die has face value 1 on all sides. Bob's prior probabilities are 90% on the first die and 10% on the second die. Alice tosses the die and the toss is a 1. Calculate Bob's posterior probabilities.

Solution: Let Θ and X denote the die and the outcome, respectively. By Bayes' rule,

$$
\begin{aligned}
& \mathrm{P}(\Theta=1 \mid X=1) \propto \mathrm{P}(X=1 \mid \Theta=1) \cdot \mathrm{P}(\Theta=1)=\frac{1}{3} \cdot 0.9=0.3 \\
& \mathrm{P}(\Theta=2 \mid X=1) \propto \mathrm{P}(X=1 \mid \Theta=2) \cdot \mathrm{P}(\Theta=2)=1 \cdot 0.1=0.1
\end{aligned}
$$

As the posterior probabilities must add up to one, we get

$$
\mathrm{P}(\Theta=1 \mid X=1)=\frac{0.3}{0.3+0.1}=\frac{3}{4} \quad \text { and } \quad \mathrm{P}(\Theta=2 \mid X=1)=\frac{0.1}{0.3+0.1}=\frac{1}{4}
$$

