The number of text messages that Alice sends to Bob on a given day is a Geometric( $\Theta$ ) random variable. Alice sent Bob 20 messages today. Assuming a Uniform(0, 1) prior on  $\Theta$  what is Alice's posterior PDF?

| random variable                     | PMF / PDF $f(t)$                                                             | range of $t$      |
|-------------------------------------|------------------------------------------------------------------------------|-------------------|
| $Geometric(\theta)$                 | $(1-\theta)^{t-1}\theta$                                                     | positive integers |
| $\operatorname{Beta}(\alpha,\beta)$ | $\frac{(\alpha+\beta-1)!}{(\alpha-1)!(\beta-1)!}t^{\alpha-1}(1-t)^{\beta-1}$ | [0,1]             |

**Solution:** The conditional PDF of the number of messages X sent given  $\Theta$  is Geometric( $\Theta$ ), namely  $f_{X|\Theta}(x|\theta) = (1-\theta)^{x-1}\theta$ , so the posterior PDF is

$$f_{\Theta|X}(\theta|x=20) \propto f_{X|\Theta}(x=20|\theta) f_{\Theta}(\theta) = (1-\theta)^{19}\theta$$

for  $0 \le \theta \le 1$ . This is the PDF of a Beta(2, 20) random variable so the proportionality constant must equal  $21!/19!1! = 21 \cdot 20 = 420$ , namely

$$f_{\Theta|X}(\theta|x=20) = 420(1-\theta)^{19}\theta.$$