The lap time of a runner at the CUHK track is a normal random variable of mean μ and standard deviation 10 (in seconds), where μ is 60 for an athlete and 120 for an amateur runner. Only 1% of the runners are athletes. Bob runs a lap in 80 seconds. How does the MAP rule classify Bob?

Solution: Let Θ be type of runner (0 for amateur, 1 for athlete) and X be the runner's lap time. The prior is $\mathrm{P}(\Theta=0)=0.99, \mathrm{P}(\Theta=1)=0.01$ and the likelihood is $f_{X \mid \Theta}(x \mid \theta)=$ $\left(2 \pi 10^{2}\right)^{-1 / 2} e^{-(x-\mu(\theta))^{2} / 2 \cdot 10^{2}}$, where $\mu(0)=120$ and $\mu(1)=60$. The ratio of posteriors is

$$
\frac{\mathrm{P}(\Theta=1 \mid X=80)}{\mathrm{P}(\Theta=0 \mid X=80)}=\frac{\mathrm{P}(\Theta=1) \cdot f_{X \mid \Theta}(80 \mid 1)}{\mathrm{P}(\Theta=0) \cdot f_{X \mid \Theta}(80 \mid 0)}=\frac{0.01 \cdot\left(2 \pi 10^{2}\right)^{-1 / 2} e^{-(80-60)^{2} / 2 \cdot 10^{2}}}{0.99 \cdot\left(2 \pi 10^{2}\right)^{-1 / 2} e^{-(80-120)^{2} / 2 \cdot 10^{2}}}=\frac{e^{6}}{99}
$$

As $e^{6} \approx 403$ the ratio exceeds one so the MAP rule classifies Bob as an athlete.

