Let M be the maximum of ten independent samples of a Uniform $(0, \theta)$ random variable. What is the smallest value of t for which (M, tM) is a 95%-confidence interval for θ ?

Solution: We are looking for the smallest t such that $P(M \le \theta \le tM) \ge 0.95$. As $\theta \ge M$ with probability one, the event $M \le \theta \le tM$ is the same as $\theta \le tM$, or equivalently $M \ge \theta/t$. As the samples X_1, \ldots, X_{10} are independent,

$$P(M \ge \theta/t) = 1 - P(M < \theta/t) = 1 - P(X_1 < \theta/t) \cdots P(X_{10} < \theta/t) = 1 - 1/t^{10},$$

so t should be chosen as small as possible so that $1 - 1/t^{10} \ge 0.95$, or $t \ge (1/0.05)^{1/10} \approx 1.349$. Therefore $t \approx 1.349$.