Let M be the maximum of ten independent samples of a Uniform $(0, \theta)$ random variable. What is the smallest value of t for which $(M, t M)$ is a 95%-confidence interval for θ ?

Solution: We are looking for the smallest t such that $\mathrm{P}(M \leq \theta \leq t M) \geq 0.95$. As $\theta \geq M$ with probability one, the event $M \leq \theta \leq t M$ is the same as $\theta \leq t M$, or equivalently $M \geq \theta / t$. As the samples X_{1}, \ldots, X_{10} are independent,

$$
\mathrm{P}(M \geq \theta / t)=1-\mathrm{P}(M<\theta / t)=1-\mathrm{P}\left(X_{1}<\theta / t\right) \cdots \mathrm{P}\left(X_{10}<\theta / t\right)=1-1 / t^{10}
$$

so t should be chosen as small as possible so that $1-1 / t^{10} \geq 0.95$, or $t \geq(1 / 0.05)^{1 / 10} \approx 1.349$. Therefore $t \approx 1.349$.

