A random variable is either uniform on the interval $[0,2]\left(H_{0}\right)$ or has the $\operatorname{PDF} f_{1}(x)=\frac{1}{2} x$ for $0 \leq x \leq 2\left(H_{1}\right)$. Use the Neyman-Pearson lemma to design a test (for a single sample) with false positive probability 10%, and calculate the false negative probability of this test.
Solution: The PDF for the null hypothesis is $f_{0}(x)=\frac{1}{2}$ on $[0,2]$ so the likelihood ratio is $f_{1}(x) / f_{0}(x)=x$. This is an increasing function of x so by the Neyman-Pearson lemma the optimal test is of the form

$$
T(x)= \begin{cases}+, & \text { if } x>t \\ -, & \text { if } x \leq t\end{cases}
$$

The false positive probability is

$$
P\left(T(X)=+\mid H_{0}\right)=\frac{1}{2}(2-t)
$$

For this to equal 10% we should set $t=2-2 \cdot 0.1=1.8$. The false negative probability is

$$
P\left(T(X)=-\mid H_{1}\right)=\int_{0}^{t} f_{1}(x) d x=\int_{0}^{1.8} \frac{1}{2} x d x=0.81
$$

