The PM10 pollutant index was estimated to 50 μ g/m³ on Monday and 35 μ g/m³ on Tuesday. Assuming each day's readings are derived from 9 independent samples of a normal random variable with standard deviation $\sigma = 6 \ \mu$ g/m³, find the p-value for the alternative hypothesis "the PM10 density has decreased".

Solution: We apply the test for comparing normal means. Let μ_M and μ_T be the actual pollutant densities on Monday and Tuesday. The difference $\overline{M} - \overline{T}$ between Monday's and Tuesday's estimates is a Normal $(\mu_M - \mu_T, \sqrt{2\sigma^2/n})$ random variable with standard deviation $\sqrt{2\sigma^2/n} = \sqrt{2 \cdot 6^2/9} = \sqrt{8}$. The test is one-sided, so it should accept the alternative hyphothesis when $\overline{M} - \overline{T} \ge t$ for a suitable threshold t. Under the null hypothesis $\overline{M} - \overline{T}$ is a Normal $(0, \sqrt{8})$ random variable so the p-value is

 $P(Normal(0,\sqrt{8}) \ge 50 - 35) \approx P(Normal(0,1) \ge 5.30) \approx 5 \cdot 10^{-8}$

so the p-value is very close to zero and the confidence in the alternative hypothesis is very high.