A scientist wants to study the null hypothesis "boy and girl births are equally likely and independent within a family". To this end he samples 1000 random two-child families and obtains the following statistics:

$$
\begin{array}{ccc}
2 \text { boys } & 1 \text { boy and } 1 \text { girl } & 2 \text { girls } \\
\hline 222 & 492 & 286
\end{array}
$$

Based on this data, can he reject the null hypothesis with 95% confidence?
Solution: Under the null hypothesis, the number of girls in a family should be a Binomial $\left(2, \frac{1}{2}\right)$ random variable, so among 1000 samples the scientist would expect to see 250 two-boy families, 500 one-boy one-girl families, and 250 two-girl families. The chisquare statistic is

$$
X^{2}=\frac{(222-250)^{2}}{250}+\frac{(492-500)^{2}}{500}+\frac{(286-250)^{2}}{250}=8.448
$$

The p-value is the probability that a $\chi^{2}(3-1)$ random variable takes value at least 8.448 , which is about 0.015 . As this is under 5% the scientist can reject the null hypothesis with 95% confidence.

